深度学习手势识别算法实现 - opencv python 计算机竞赛
文章目录
- 1 前言
- 2 项目背景
- 3 任务描述
- 4 环境搭配
- 5 项目实现
- 5.1 准备数据
- 5.2 构建网络
- 5.3 开始训练
- 5.4 模型评估
- 6 识别效果
- 7 最后
1 前言
🔥 优质竞赛项目系列,今天要分享的是
🚩 深度学习手势识别算法实现 - opencv python
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🥇学长这里给一个题目综合评分(每项满分5分)
- 难度系数:3分
- 工作量:3分
- 创新点:4分
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
2 项目背景
手势识别在深度学习项目是算是比较简单的。这里为了给大家会更好的训练。其中的数据集如下:

3 任务描述
图像分类是根据图像的语义信息将不同类别图像区分开来,是计算机视觉中重要的基本问题。手势识别属于图像分类中的一个细分类问题。虽然与NLP的内容其实没有多大的关系,但是作为深度学习,DNN是一个最为简单的深度学习的算法,它是学习后序CNN、RNN、Lstm以及其他算法深度学习算法的基础。
实践环境:Python3.7,PaddlePaddle1.7.0。
用的仍然是前面多次提到的jupyter notebook,当然我们也可以用本地的pycharm。不过这里需要提醒大家,如果用的是jupyter
notebook作为试验训练,在实验中会占用很大的内存,jupyter
notebook默认路径在c盘,时间久了,我们的c盘会内存爆满,希望我们将其默认路径修改为其他的路径,网上有很多的修改方式,这里限于篇幅就不做说明了。这里需要给大家简要说明:paddlepaddle是百度
AI Studio的一个开源框架,类似于我们以前接触到的tensorflow、keras、caffe、pytorch等深度学习的框架。
4 环境搭配
首先在百度搜索paddle,选择你对应的系统(Windows、macOs、Ubuntu、Centos),然后选择你的安装方式(pip、conda、docker、源码编译),最后选择python的版本(Python2、python3),但是一般选择python3。
左后先则版本(GPU、CPU),但是后期我们用到大量的数据集,因此,我们需要下载GPU版本。,然后将该命令复制到cmd终端,点击安装,这里用到了百度的镜像,可以加快下载安装的速度。
python -m pip install paddlepaddle-gpu==1.8.3.post107 -i https://mirror.baidu.com/pypi/simple
学长电脑是window10系统,用的是pip安装方式,安装的版本是python3,本人的CUDA版本是CUDA10,因此选择的示意图以及安装命令如图所示。这里前提是我们把GPU安装需要的环境配好,网上有很多相关的文章,这里篇幅有限,就不进行展开叙述了。

环境配好了,接下来就该项目实现。
5 项目实现
5.1 准备数据
首先我们导入必要的第三方库。
import os
import time
import random
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from multiprocessing import cpu_count
from paddle.fluid.dygraph import Pool2D,Conv2D
from paddle.fluid.dygraph import Linear
该数据集是学长自己收集标注的数据集(目前较小):包含0-9共就种数字手势,共2073张手势图片。
图片一共有3100100张,格式均为RGB格式文件。在本次实验中,我们选择其中的10%作为测试集,90%作为训练集。通过遍历图片,根据文件夹名称,生成label。
我按照1:9比例划分测试集和训练集,生成train_list 和 test_list,具体实现如下:
data_path = '/home/aistudio/data/data23668/Dataset' # 这里填写自己的数据集的路径,windows的默认路径是\,要将其路径改为/。
character_folders = os.listdir(data_path)
print(character_folders)
if (os.path.exists('./train_data.list')):os.remove('./train_data.list')
if (os.path.exists('./test_data.list')):os.remove('./test_data.list')
for character_folder in character_folders:with open('./train_data.list', 'a') as f_train:with open('./test_data.list', 'a') as f_test:if character_folder == '.DS_Store':continuecharacter_imgs = os.listdir(os.path.join(data_path, character_folder))count = 0for img in character_imgs:if img == '.DS_Store':continueif count % 10 == 0:f_test.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')else:f_train.write(os.path.join(data_path, character_folder, img) + '\t' + character_folder + '\n')count += 1
print('列表已生成')
其效果图如图所示:

这里需要简单的处理图片。需要说明一些函数:
- data_mapper(): 读取图片,对图片进行归一化处理,返回图片和 标签。
- data_reader(): 按照train_list和test_list批量化读取图片。
- train_reader(): 用于训练的数据提供器,乱序、按批次提供数据
- test_reader():用于测试的数据提供器
具体的实现如下:
def data_mapper(sample):img, label = sampleimg = Image.open(img)img = img.resize((32, 32), Image.ANTIALIAS)img = np.array(img).astype('float32')img = img.transpose((2, 0, 1))img = img / 255.0return img, label
def data_reader(data_list_path):def reader():with open(data_list_path, 'r') as f:lines = f.readlines()for line in lines:img, label = line.split('\t')yield img, int(label)return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 512)
5.2 构建网络
在深度学习中有一个关键的环节就是参数的配置,这些参数设置的恰当程度直接影响这我们的模型训练的效果。
因此,也有特别的一个岗位就叫调参岗,专门用来调参的,这里是通过自己积累的经验来调参数,没有一定的理论支撑,因此,这一块是最耗时间的,当然也是深度学习的瓶颈。
接下来进行参数的设置。
train_parameters = {"epoch": 1, #训练轮数"batch_size": 16, #批次大小"lr":0.002, #学习率"skip_steps":10, #每10个批次输出一次结果"save_steps": 30, #每10个批次保存一次结果"checkpoints":"data/"
}train_reader = paddle.batch(reader=paddle.reader.shuffle(reader=data_reader('./train_data.list'), buf_size=256),batch_size=32)
test_reader = paddle.batch(reader=data_reader('./test_data.list'), batch_size=32)
前面也提到深度神经网络(Deep Neural Networks, 简称DNN)是深度学习的基础。DNN网络图如图所示:

首先定义一个神经网络,具体如下
class MyLeNet(fluid.dygraph.Layer):def __init__(self):super(MyLeNet, self).__init__()self.c1 = Conv2D(3, 6, 5, 1)self.s2 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)self.c3 = Conv2D(6, 16, 5, 1)self.s4 = Pool2D(pool_size=2, pool_type='max', pool_stride=2)self.c5 = Conv2D(16, 120, 5, 1)self.f6 = Linear(120, 84, act='relu')self.f7 = Linear(84, 10, act='softmax')def forward(self, input):# print(input.shape) x = self.c1(input)# print(x.shape)x = self.s2(x)# print(x.shape)x = self.c3(x)# print(x.shape)x = self.s4(x)# print(x.shape)x = self.c5(x)# print(x.shape)x = fluid.layers.reshape(x, shape=[-1, 120])# print(x.shape)x = self.f6(x)y = self.f7(x)return y
这里需要说明的是,在forward方法中,我们在每一步都给出了打印的print()函数,就是为了方便大家如果不理解其中的步骤,可以在实验中进行打印,通过结果来帮助我们进一步理解DNN的每一步网络构成。
5.3 开始训练
接下来就是训练网络。
为了方便我观察实验中训练的结果,学长引入了matplotlib第三方库,直观的通过图来观察我们的训练结果,具体训练网络代码实现如下:
import matplotlib.pyplot as plt
Iter=0
Iters=[]
all_train_loss=[]
all_train_accs=[]
def draw_train_process(iters,train_loss,train_accs):title='training loss/training accs'plt.title(title,fontsize=24)plt.xlabel('iter',fontsize=14)plt.ylabel('loss/acc',fontsize=14)plt.plot(iters,train_loss,color='red',label='training loss')plt.plot(iters,train_accs,color='green',label='training accs')plt.legend()plt.grid()plt.show()with fluid.dygraph.guard():model = MyLeNet() # 模型实例化model.train() # 训练模式opt = fluid.optimizer.SGDOptimizer(learning_rate=0.01,parameter_list=model.parameters()) # 优化器选用SGD随机梯度下降,学习率为0.001.epochs_num = 250 # 迭代次数for pass_num in range(epochs_num):for batch_id, data in enumerate(train_reader()):images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)labels = np.array([x[1] for x in data]).astype('int64')labels = labels[:, np.newaxis]# print(images.shape)image = fluid.dygraph.to_variable(images)label = fluid.dygraph.to_variable(labels)predict = model(image) # 预测# print(predict)loss = fluid.layers.cross_entropy(predict, label)avg_loss = fluid.layers.mean(loss) # 获取loss值acc = fluid.layers.accuracy(predict, label) # 计算精度Iter += 32Iters.append(Iter)all_train_loss.append(loss.numpy()[0])all_train_accs.append(acc.numpy()[0])if batch_id != 0 and batch_id % 50 == 0:print("train_pass:{},batch_id:{},train_loss:{},train_acc:{}".format(pass_num, batch_id, avg_loss.numpy(), acc.numpy()))avg_loss.backward()opt.minimize(avg_loss)model.clear_gradients()fluid.save_dygraph(model.state_dict(), 'MyLeNet') # 保存模型
draw_train_process(Iters, all_train_loss, all_train_accs)
训练过程以及结果如下:

前面提到强烈建议大家安装gpu版的paddle框架,因为就是在训练过程中,paddle框架会利用英伟达的GP加速,训练的速度会很快的,而CPU则特别的慢。因此,CPU的paddle框架只是在学习的时候还可以,一旦进行训练,根本不行。
可能GPU需要几秒的训练在CPU可能需要十几分钟甚至高达半个小时。其实不只是paddlepaddle框架建议大家安装GPU版本,其他的类似tensorflow、keras、caffe等框架也是建议大家按安装GPU版本。不过安装起来比较麻烦,还需要大家认真安装。
with fluid.dygraph.guard():accs = []model_dict, _ = fluid.load_dygraph('MyLeNet')model = MyLeNet()model.load_dict(model_dict) # 加载模型参数model.eval() # 训练模式for batch_id, data in enumerate(test_reader()): # 测试集images = np.array([x[0].reshape(3, 32, 32) for x in data], np.float32)labels = np.array([x[1] for x in data]).astype('int64')labels = labels[:, np.newaxis]image = fluid.dygraph.to_variable(images)label = fluid.dygraph.to_variable(labels)predict = model(image)acc = fluid.layers.accuracy(predict, label)accs.append(acc.numpy()[0])avg_acc = np.mean(accs)print(avg_acc)
5.4 模型评估
配置好了网络,并且进行了一定的训练,接下来就是对我们训练的模型进行评估,具体实现如下:

结果还可以,这里说明的是,刚开始我们的模型训练评估不可能这么好,可能存在过拟合或者欠拟合的问题,不过更常见的是过拟合,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将DNN换为更为合适的CNN神经网络模型,效果就会好很多,关于CNN的相关知识以及实验,我们下篇文章在为大家介绍。最后就是我们的模型的预测。
6 识别效果



7 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
深度学习手势识别算法实现 - opencv python 计算机竞赛
文章目录 1 前言2 项目背景3 任务描述4 环境搭配5 项目实现5.1 准备数据5.2 构建网络5.3 开始训练5.4 模型评估 6 识别效果7 最后 1 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习手势识别算法实现 - opencv python 该项目较为新颖…...
2023-12-01 AIGC-自动生成ppt的AI工具
摘要: 2023-12-01 AIGC-自动生成ppt-记录 自动生成ppt: BoardMix boardmix 一键生成ppt boardmix是一款基于云的ai设计软件,允许创建用于各种目的的自定义演示文稿、ai绘画,ai生成思维导图等。以下是它的一些功能: 可定制的模板 - 它有一个…...
NoSQL 数据建模错误会降低性能
数据建模错误是破坏性能的最简单方法之一。当您使用 NoSQL 时,特别容易搞砸,(讽刺的是)NoSQL 往往用于对性能最敏感的工作负载。NoSQL 数据建模最初可能看起来非常简单:只需对数据进行建模以适应应用程序的访问模式。但…...
在Android上搭建一个NDK项目
首先New Project,选择Native C,点击Next。 填入项目名称和包名,点击Next。 这里我们选择Cmake默认的C版本。 创建好的项目目录,里面比我们正常的Android项目多了一个cpp目录 打开MainActivity。里面定义了一个jni方法stringFromJN…...
TOP-K问题和向上调整算法和向下调整算法的时间复杂度问题的分析
TOP-K问题 TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大 比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等 对于Top-K问题,能想到的最简单直接的方式就是排序,但是…...
3、服务器性能剖析
性能优化简介 **我们将性能定义为完成某件任务所需要的时间度量,换句话说,性能即响应时间,这是一个非常重要的原则。**我们通过任务和时间而不是资源来测量性能。数据库服务器的目的是执行sql语句,所以他关注的任务是查询或者语句…...
xxl-job 分布式任务调度框架
文章目录 分布式任务调度XXL-Job 简介XXL-Job 环境搭建XXL-Job (源码说明)配置部署调度中心docker安装 Bean模式任务(方法形式)-入门案例任务详解任务详解-执行器任务详解-基础配置任务详解-调度配置任务详解-基础配置任务详解-阻塞处理策略任务详解-路由策略 路由策略路由策略…...
软件使用-stm32入门
这节主要是介绍大家使用两个软件。这两个软件也是比较常用的,里面也有很多有意思的功能,可以给大家介绍一下。 1. FlyMcu 软件 这个软件可以通过串口给 STM32 下载程序,如果你没有 STLINK,就可以用这个软件通过串口下载程序。 …...
使用MAT分析内存泄漏(mac)
前言 今天主要简单分享下Eclipse的Memory Analyzer在mac下的使用。 一、Mat(简称)干什么的? 就是分析java内存泄漏的工具。 二、使用步骤 1.下载 mac版的现在也分芯片,别下错了。我这里是M2芯片的,下载的Arch64的。 …...
【Vue】Linux 运行 npm run serve 报错 vue-cli-service: Permission denied
问题描述 在Linux系统上运行npm run serve命令时,控制台报错: sudo npm run serve project50.1.0 serve vue-cli-service serve sh: 1: vue-cli-service: Permission denied错误截图如下: 原因分析 该错误是由于vue-cli-service文件权限不…...
LeetCode的几道题
一、捡石头 292 思路就是: 谁面对4块石头的时候,谁就输(因为每次就是1-3块石头,如果剩下4块石头,你怎么拿,我都能把剩下的拿走,所以你就要想尽办法让对面面对4块石头的倍数, 比如有…...
NLP/Natural Language Processing
一、NLP是什么 自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向,也就是人们常说的「自然语言处理」,就是研究如何让计算机读懂人类语言,即将人的自然语言转换为计算机可以阅读的指令。它研…...
【教学类-06-12】20231202 0-9数字分合-房屋样式(一)-下右空-升序-抽7题
作品展示-屋顶分合(0-9之间随机抽取7个不重复分合) 背景需求: 大班幼儿学分合题,通常区角里会设计一个“房屋分合”的样式 根据这种房屋样式,设计0-9内的升序分合题模板 素材准备 WORD样式 代码展示: 2-9…...
uni-app 微信小程序 电子签名及签名图片翻转显示功能
文章目录 1. 需求背景2. 开始撸2.1 点击 重写 进入签名页面(上图一)2.2 书写签名,点击确认返回,及图片翻转显示(上图二,三) 3. 图片进行翻转,返回翻转后的图片 1. 需求背景 接的一个…...
MySQL 8.0关键字和保留字
官网地址: https://dev.mysql.com/doc/refman/8.0/en/keywords.html 可以粘贴出去自己排版整理 {accessible} {account} {action} {active} {add} {admin} {after} {against} {aggregate} {algorithm} {all} {alter} {always} {analyse} {analyze} …...
PyLMKit(3):基于角色扮演的应用案例
角色扮演应用案例RolePlay 0.项目信息 日期: 2023-12-2作者:小知课题: 通过设置角色模板并结合在线搜索、记忆和知识库功能,实现典型的对话应用功能。这个功能是大模型应用的基础功能,在后续其它RAG等功能中都会用到这个功能。功…...
JAVA全栈开发 集合详解(day14+day15汇总)
一、数组 数组是一个容器,可以存入相同类型的多个数据元素。 数组局限性: 长度固定:(添加–扩容, 删除-缩容) 类型是一致的 对象数组 : int[] arr new int[5]; … Student[] arr …...
Linux Spug自动化运维平台本地部署与公网远程访问
文章目录 前言1. Docker安装Spug2 . 本地访问测试3. Linux 安装cpolar4. 配置Spug公网访问地址5. 公网远程访问Spug管理界面6. 固定Spug公网地址 前言 Spug 面向中小型企业设计的轻量级无 Agent 的自动化运维平台,整合了主机管理、主机批量执行、主机在线终端、文件…...
zookeeper集群和kafka集群
(一)kafka 1、kafka3.0之前依赖于zookeeper 2、kafka3.0之后不依赖zookeeper,元数据由kafka节点自己管理 (二)zookeeper 1、zookeeper是一个开源的、分布式的架构,提供协调服务(Apache项目&…...
Java——》JSONObjet 数据顺序
推荐链接: 总结——》【Java】 总结——》【Mysql】 总结——》【Redis】 总结——》【Kafka】 总结——》【Spring】 总结——》【SpringBoot】 总结——》【MyBatis、MyBatis-Plus】 总结——》【Linux】 总结——》【MongoD…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
Element Plus 表单(el-form)中关于正整数输入的校验规则
目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入(联动)2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...
