当前位置: 首页 > news >正文

如何基于OpenCV和Sklearn库开展数据降维

      大家在做数据分析或者机器学习应用过程中,不可避免的需要对数据进行降维操作,好多垂直行业业务中经常出现数据量少但维度巨大的情况。数据降维的目的是为了剔除不相关或冗余特征,使得数据易用,去除无用数据,实现数据可视化,提高模型精确度,减少运行成本,减少特征个数并关注本质特征,确保数据特征属性间相互独立。

1.数据降维的主要方法

数据降维主要有线性和非线性方法,线性方法有PCA 、ICA、LDA、LFA、LPP(LE 的线性表示),非线性方法有基于核函数——KPCA 、KICA、KDA,基于特征值的流型学习——ISOMAP、LLE、LE、LPP、LTSA、MVU。
本文主要讲述PCA和ICA以及NMF,NMF是一种只关注非负值的PCA降维方法。其中,PCA是一种全新的正交特征(也被称为主成分)来表示向数据变化最大的方向投影(最大方差),或者说向重构误差最小化的方向投影,形成维度更少、正交的数据特征。

2.数据降维的应用场景

主要应用于文本处理、人脸识别、图片识别、自然语言处理、业务环节的高维数据处理等领域。

3.数据降维示例

数据降维方法的主要示例详见下方。

import numpy as np  
import matplotlib.pyplot as plt  
import cv2  #主成分分析PCA
mean = [20, 20]             # 各维度的均值,确定数据维度,表示1行2列,长度为N的一维矩阵  
cov = [[5, 0], [25, 25]]    # 协方差矩阵,且协方差矩阵必须是对称矩阵和半正定矩阵(形状为(N,N)的二维数组) 
np.random.seed(42) #设置随机种子点,这样每次生成数据都一样  
x, y = np.random.multivariate_normal(mean, cov, 2000).T #根据均值和协方差矩阵情况生成一个多元正态分布矩阵  
plt.figure(figsize=(10, 6))  
plt.plot(x, y, 'o', zorder=1)  
plt.axis([0, 40, 0, 40])  
plt.xlabel('source feature 1')  
plt.ylabel('source feature 2')  
plt.show()  
X = np.vstack((x, y)).T #组合成特征矩阵  
mu, eig = cv2.PCACompute(X, np.array([])) #以空数组作为蒙版,获得平均值和协方差矩阵的特征向量eig  
plt.figure(figsize=(10, 6))  
plt.plot(x, y, 'o', zorder=1)  
plt.quiver(mean, mean, eig[:, 0], eig[:, 1], zorder=3, scale=0.2, units='xy')  
plt.text(mean[0] + 5 * eig[0, 0], mean[1] + 5 * eig[0, 1], 'v1', zorder=5,  
fontsize=16, bbox=dict(facecolor='white', alpha=0.6))  
plt.text(mean[0] + 7 * eig[1, 0], mean[1] + 4 * eig[1, 1], 'v2', zorder=5,  
fontsize=16, bbox=dict(facecolor='white', alpha=0.6))  
plt.axis([0, 40, 0, 40])  
plt.xlabel('feature 1')  
plt.ylabel('feature 2')  
plt.show()  #1.opencv提供与PCA密切相关的降维技术  
X2 = cv2.PCAProject(X, mu, eig)     #选择数据,将xy坐标轴旋转为以v1,v2为坐标轴,v1、v2的选择来自于mu和eig  
plt.figure(figsize=(10, 6))  
plt.plot(X2[:, 0], X2[:, 1], '^')  
plt.xlabel('first principal component')  
plt.ylabel('second principal component')  
plt.axis([-20, 20, -10, 10])  
plt.show()  #2.sklearn提供与PCA密切相关的降维技术ICA  
from sklearn import decomposition  
ica = decomposition.FastICA() #与PCA类似,但分解后选择尽量相互独立的成分。  
X2 = ica.fit_transform(X)  
plt.figure(figsize=(10, 6))  
plt.plot(X2[:, 0], X2[:, 1], '^')  
plt.xlabel('first independent component')  
plt.ylabel('second independent component')  
plt.axis([-0.2, 0.2, -0.2, 0.2])  
plt.show()  #3.sklearn提供PCA密切相关的降维技术,即非负矩阵分解,仅仅处理那些非负的数据,特征矩阵中不能有负值  
from sklearn import decomposition  
nmf = decomposition.NMF()  
X2 = nmf.fit_transform(X)  
plt.figure(figsize=(10, 6))  
plt.plot(X2[:, 0], X2[:, 1], 'o')  
plt.xlabel('first non-negative component')  
plt.ylabel('second non-negative component')  
plt.axis([0, 1.5, -0.5, 1.5])  
plt.show()

相关文章:

如何基于OpenCV和Sklearn库开展数据降维

大家在做数据分析或者机器学习应用过程中,不可避免的需要对数据进行降维操作,好多垂直行业业务中经常出现数据量少但维度巨大的情况。数据降维的目的是为了剔除不相关或冗余特征,使得数据易用,去除无用数据,实现数据可…...

详解SpringAop开发过程中的坑

😉😉 学习交流群: ✅✅1:这是孙哥suns给大家的福利! ✨✨2:我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 🥭🥭3:QQ群:583783…...

【海思SS528 | VDEC】MPP媒体处理软件V5.0 | VDEC的使用总结

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...

Kubernetes sample-controller 例子介绍

sample-controller sample-controller 是 K8s 官方自定义 CDR 及控制器是实现的例子 通过使用这个自定义 CDR 控制器及阅读它的代码,基本可以了解如何制作一个 CDR 控制器 CDR 运作原理 网上有更好的文章,说明其运作原理: https://www.z…...

【C/C++指针】指针*与引用的区别

指针变量的值是所指对象的地址(准确说是首地址,其类型定义其所指对象的字节长度)引用变量的值是所引用对象本身的值 1 初始化 指针变量 可不初始化 且 可以更换指向对象 int *p;//此时是个野指针,该指针变量的值是任意值&#x…...

【ArcGIS Pro微课1000例】0039:制作全球任意经纬网的两种方式

本文讲解在ArcGIS Pro中制作全球任意经纬网的两种方式。 文章目录 一、生成全球经纬网矢量1. 新建地图加载数据2. 创建经纬网矢量数据二、布局生成经纬网1. 新建布局2. 创建地图框2. 创建经纬网一、生成全球经纬网矢量 以1:100万比例尺地图分幅为例,创建经差6、维差4的经纬网…...

【二叉树】练习题终章

二叉树的销毁 void BTreeDestroy(BTNode* root) {if (root NULL)return;BTreeDestroy(root->left);BTreeDestroy(root->right);free(root); }递归展示图 使用后序销毁,如果用前序销毁的话,就会找不到根对应的子树的地址.下面就不能被销毁了&…...

flutter开发实战-实现获取视频的缩略图封面video_thumbnail

flutter开发实战-实现获取视频的缩略图封面video_thumbnail 在很多时候,我们查看视频的时候,视频没有播放时候,会显示一张封面,可能封面没有配置图片,这时候就需要通过获取视频的缩略图来显示封面了。这里使用了video…...

Prompt Toolkit探索:打造交互式CLI应用

简介:prompt_toolkit 是一个 Python 的库,它提供了一系列功能丰富的用户界面元素,比如自动完成、语法高亮、多行编辑、提示等等,让你可以轻松地构建出功能强大的命令行工具。而且,这个库还被 IPython 和 pgcli 这样的知…...

【已解决】AttributeError: module ‘gradio‘ has no attribute ‘outputs‘

问题描述 AttributeError: module gradio has no attribute outputs 不知道作者用的是哪个gradio版本,最新的版本报错AttributeError: module gradio has no attribute outputs , 换一个老一点的版本会报错AttributeError: module gradio has no attribu…...

WPF Mvvm模式下面如何将事件映射到ViewModel层

前言 平常用惯了Command绑定,都快忘记传统的基于事件编程模式了,但是Commond模式里面有个明显的问题,就是你无法获取到事件源的参数。很多大聪明肯定会说,这还不简单,通过自己写控件,给控件加个自定义属性不就行了,想要啥事件就写啥事件进去,完全自主可控。但是对于写…...

C# WPF上位机开发(计算器界面设计)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 c# wpf最大的优势就是开发业务软件比较快、效率比较高。一般来说,它的界面和逻辑部分可以同时开发。界面的部分用xaml编写即可&#xf…...

[c]比较月亮大小

本题的难点就是分情况讨论 #include<stdio.h> int main() {int n;scanf("%d",&n);int arr2[n];int p;for(int m0;m<n-1;m){scanf("%d",&arr2[m]);//输入n个数保存到数组}if(n1)//当输入一个数据时&#xff0c;输入0&#xff0c;可以判断…...

【Java 基础】16 泛型

文章目录 什么是泛型&#xff1f;泛型的声明泛型的使用泛型方法通配符和泛型上下界1&#xff09;通配符2&#xff09;泛型上下界 泛型的好处注意事项 泛型提供了一种在编写代码时更好地 支持类型安全的机制。通过泛型&#xff0c;我们可以编写更加 通用、 灵活、 可读性高的…...

Android framework定制1-->用户无操作一段时间,自动播放客户提供的视频,用户操作后退出播放

在PowerManagerService.java中监听用户操作&#xff0c;10秒无操作则打开预置的apk播放视频&#xff0c;直接上代码&#xff1a; --- a/frameworks/base/services/core/java/com/android/server/power/PowerManagerService.javab/frameworks/base/services/core/java/com/andr…...

Vmware17虚拟机安装windows10系统

不要去什么系统之家之类的下载镜像&#xff0c;会不好安装&#xff0c;镜像被魔改过了&#xff0c;适合真实物理机上的系统在PE里安装系统&#xff0c;建议下载原版系统ISO文件 安装vmware17pro 下载地址https://dwangshuo.jb51.net/202211/tools/VMwareplayer17_855676.rar 解…...

Golang实践录:读取yaml配置文件

本文对 yaml 文件进行解析。 下载 yaml执行 go get github.com/spf13/viper 安装。 golang 有很多库可以解释 yaml 文件。本文选用 viper 进行解析&#xff0c;执行 go get github.com/spf13/viper 安装。 yaml语法规则 yaml对大小写敏感。yaml的层级关系只能使用空格缩进&a…...

oracle sql相关语法

SQL*PLUS 在SQL*PLUS执行&#xff0c;会在执行后显示查询的执行计划和统计信息 SET AUTOTRACE ON;SELECT * FROM your_table WHERE column_name value;SET AUTOTRACE OFF;PLSQL PLSQL查询sql界面&#xff0c;鼠标右键&#xff0c;点击执行计划&#xff0c;会出现sql的执行计…...

el-table,列表合并,根据名称列名称相同的品名将其它列值相同的进行合并

el-table,列表合并,根据名称列名称相同的品名将其它列值相同的进行合并,并且不能跨品名合并 如图 用到el-table合并行的方法合并 tableSpanMethod({ row, column, rowIndex, columnIndex }) {if (column.property "materielName") {//合并商品名const _row this…...

微信小程序显示二维码?

wxml <canvas style"width: 100%;height: 100%;margin-left: 20%;" id"Canvase" type"2d"></canvas> js // pages/code/code.js Page({/*** 页面的初始数据*/data: {code: ,},/*** 生命周期函数--监听页面加载*/onLoad(options) {…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...