当前位置: 首页 > news >正文

如何基于OpenCV和Sklearn库开展数据降维

      大家在做数据分析或者机器学习应用过程中,不可避免的需要对数据进行降维操作,好多垂直行业业务中经常出现数据量少但维度巨大的情况。数据降维的目的是为了剔除不相关或冗余特征,使得数据易用,去除无用数据,实现数据可视化,提高模型精确度,减少运行成本,减少特征个数并关注本质特征,确保数据特征属性间相互独立。

1.数据降维的主要方法

数据降维主要有线性和非线性方法,线性方法有PCA 、ICA、LDA、LFA、LPP(LE 的线性表示),非线性方法有基于核函数——KPCA 、KICA、KDA,基于特征值的流型学习——ISOMAP、LLE、LE、LPP、LTSA、MVU。
本文主要讲述PCA和ICA以及NMF,NMF是一种只关注非负值的PCA降维方法。其中,PCA是一种全新的正交特征(也被称为主成分)来表示向数据变化最大的方向投影(最大方差),或者说向重构误差最小化的方向投影,形成维度更少、正交的数据特征。

2.数据降维的应用场景

主要应用于文本处理、人脸识别、图片识别、自然语言处理、业务环节的高维数据处理等领域。

3.数据降维示例

数据降维方法的主要示例详见下方。

import numpy as np  
import matplotlib.pyplot as plt  
import cv2  #主成分分析PCA
mean = [20, 20]             # 各维度的均值,确定数据维度,表示1行2列,长度为N的一维矩阵  
cov = [[5, 0], [25, 25]]    # 协方差矩阵,且协方差矩阵必须是对称矩阵和半正定矩阵(形状为(N,N)的二维数组) 
np.random.seed(42) #设置随机种子点,这样每次生成数据都一样  
x, y = np.random.multivariate_normal(mean, cov, 2000).T #根据均值和协方差矩阵情况生成一个多元正态分布矩阵  
plt.figure(figsize=(10, 6))  
plt.plot(x, y, 'o', zorder=1)  
plt.axis([0, 40, 0, 40])  
plt.xlabel('source feature 1')  
plt.ylabel('source feature 2')  
plt.show()  
X = np.vstack((x, y)).T #组合成特征矩阵  
mu, eig = cv2.PCACompute(X, np.array([])) #以空数组作为蒙版,获得平均值和协方差矩阵的特征向量eig  
plt.figure(figsize=(10, 6))  
plt.plot(x, y, 'o', zorder=1)  
plt.quiver(mean, mean, eig[:, 0], eig[:, 1], zorder=3, scale=0.2, units='xy')  
plt.text(mean[0] + 5 * eig[0, 0], mean[1] + 5 * eig[0, 1], 'v1', zorder=5,  
fontsize=16, bbox=dict(facecolor='white', alpha=0.6))  
plt.text(mean[0] + 7 * eig[1, 0], mean[1] + 4 * eig[1, 1], 'v2', zorder=5,  
fontsize=16, bbox=dict(facecolor='white', alpha=0.6))  
plt.axis([0, 40, 0, 40])  
plt.xlabel('feature 1')  
plt.ylabel('feature 2')  
plt.show()  #1.opencv提供与PCA密切相关的降维技术  
X2 = cv2.PCAProject(X, mu, eig)     #选择数据,将xy坐标轴旋转为以v1,v2为坐标轴,v1、v2的选择来自于mu和eig  
plt.figure(figsize=(10, 6))  
plt.plot(X2[:, 0], X2[:, 1], '^')  
plt.xlabel('first principal component')  
plt.ylabel('second principal component')  
plt.axis([-20, 20, -10, 10])  
plt.show()  #2.sklearn提供与PCA密切相关的降维技术ICA  
from sklearn import decomposition  
ica = decomposition.FastICA() #与PCA类似,但分解后选择尽量相互独立的成分。  
X2 = ica.fit_transform(X)  
plt.figure(figsize=(10, 6))  
plt.plot(X2[:, 0], X2[:, 1], '^')  
plt.xlabel('first independent component')  
plt.ylabel('second independent component')  
plt.axis([-0.2, 0.2, -0.2, 0.2])  
plt.show()  #3.sklearn提供PCA密切相关的降维技术,即非负矩阵分解,仅仅处理那些非负的数据,特征矩阵中不能有负值  
from sklearn import decomposition  
nmf = decomposition.NMF()  
X2 = nmf.fit_transform(X)  
plt.figure(figsize=(10, 6))  
plt.plot(X2[:, 0], X2[:, 1], 'o')  
plt.xlabel('first non-negative component')  
plt.ylabel('second non-negative component')  
plt.axis([0, 1.5, -0.5, 1.5])  
plt.show()

相关文章:

如何基于OpenCV和Sklearn库开展数据降维

大家在做数据分析或者机器学习应用过程中,不可避免的需要对数据进行降维操作,好多垂直行业业务中经常出现数据量少但维度巨大的情况。数据降维的目的是为了剔除不相关或冗余特征,使得数据易用,去除无用数据,实现数据可…...

详解SpringAop开发过程中的坑

😉😉 学习交流群: ✅✅1:这是孙哥suns给大家的福利! ✨✨2:我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 🥭🥭3:QQ群:583783…...

【海思SS528 | VDEC】MPP媒体处理软件V5.0 | VDEC的使用总结

😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...

Kubernetes sample-controller 例子介绍

sample-controller sample-controller 是 K8s 官方自定义 CDR 及控制器是实现的例子 通过使用这个自定义 CDR 控制器及阅读它的代码,基本可以了解如何制作一个 CDR 控制器 CDR 运作原理 网上有更好的文章,说明其运作原理: https://www.z…...

【C/C++指针】指针*与引用的区别

指针变量的值是所指对象的地址(准确说是首地址,其类型定义其所指对象的字节长度)引用变量的值是所引用对象本身的值 1 初始化 指针变量 可不初始化 且 可以更换指向对象 int *p;//此时是个野指针,该指针变量的值是任意值&#x…...

【ArcGIS Pro微课1000例】0039:制作全球任意经纬网的两种方式

本文讲解在ArcGIS Pro中制作全球任意经纬网的两种方式。 文章目录 一、生成全球经纬网矢量1. 新建地图加载数据2. 创建经纬网矢量数据二、布局生成经纬网1. 新建布局2. 创建地图框2. 创建经纬网一、生成全球经纬网矢量 以1:100万比例尺地图分幅为例,创建经差6、维差4的经纬网…...

【二叉树】练习题终章

二叉树的销毁 void BTreeDestroy(BTNode* root) {if (root NULL)return;BTreeDestroy(root->left);BTreeDestroy(root->right);free(root); }递归展示图 使用后序销毁,如果用前序销毁的话,就会找不到根对应的子树的地址.下面就不能被销毁了&…...

flutter开发实战-实现获取视频的缩略图封面video_thumbnail

flutter开发实战-实现获取视频的缩略图封面video_thumbnail 在很多时候,我们查看视频的时候,视频没有播放时候,会显示一张封面,可能封面没有配置图片,这时候就需要通过获取视频的缩略图来显示封面了。这里使用了video…...

Prompt Toolkit探索:打造交互式CLI应用

简介:prompt_toolkit 是一个 Python 的库,它提供了一系列功能丰富的用户界面元素,比如自动完成、语法高亮、多行编辑、提示等等,让你可以轻松地构建出功能强大的命令行工具。而且,这个库还被 IPython 和 pgcli 这样的知…...

【已解决】AttributeError: module ‘gradio‘ has no attribute ‘outputs‘

问题描述 AttributeError: module gradio has no attribute outputs 不知道作者用的是哪个gradio版本,最新的版本报错AttributeError: module gradio has no attribute outputs , 换一个老一点的版本会报错AttributeError: module gradio has no attribu…...

WPF Mvvm模式下面如何将事件映射到ViewModel层

前言 平常用惯了Command绑定,都快忘记传统的基于事件编程模式了,但是Commond模式里面有个明显的问题,就是你无法获取到事件源的参数。很多大聪明肯定会说,这还不简单,通过自己写控件,给控件加个自定义属性不就行了,想要啥事件就写啥事件进去,完全自主可控。但是对于写…...

C# WPF上位机开发(计算器界面设计)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 c# wpf最大的优势就是开发业务软件比较快、效率比较高。一般来说,它的界面和逻辑部分可以同时开发。界面的部分用xaml编写即可&#xf…...

[c]比较月亮大小

本题的难点就是分情况讨论 #include<stdio.h> int main() {int n;scanf("%d",&n);int arr2[n];int p;for(int m0;m<n-1;m){scanf("%d",&arr2[m]);//输入n个数保存到数组}if(n1)//当输入一个数据时&#xff0c;输入0&#xff0c;可以判断…...

【Java 基础】16 泛型

文章目录 什么是泛型&#xff1f;泛型的声明泛型的使用泛型方法通配符和泛型上下界1&#xff09;通配符2&#xff09;泛型上下界 泛型的好处注意事项 泛型提供了一种在编写代码时更好地 支持类型安全的机制。通过泛型&#xff0c;我们可以编写更加 通用、 灵活、 可读性高的…...

Android framework定制1-->用户无操作一段时间,自动播放客户提供的视频,用户操作后退出播放

在PowerManagerService.java中监听用户操作&#xff0c;10秒无操作则打开预置的apk播放视频&#xff0c;直接上代码&#xff1a; --- a/frameworks/base/services/core/java/com/android/server/power/PowerManagerService.javab/frameworks/base/services/core/java/com/andr…...

Vmware17虚拟机安装windows10系统

不要去什么系统之家之类的下载镜像&#xff0c;会不好安装&#xff0c;镜像被魔改过了&#xff0c;适合真实物理机上的系统在PE里安装系统&#xff0c;建议下载原版系统ISO文件 安装vmware17pro 下载地址https://dwangshuo.jb51.net/202211/tools/VMwareplayer17_855676.rar 解…...

Golang实践录:读取yaml配置文件

本文对 yaml 文件进行解析。 下载 yaml执行 go get github.com/spf13/viper 安装。 golang 有很多库可以解释 yaml 文件。本文选用 viper 进行解析&#xff0c;执行 go get github.com/spf13/viper 安装。 yaml语法规则 yaml对大小写敏感。yaml的层级关系只能使用空格缩进&a…...

oracle sql相关语法

SQL*PLUS 在SQL*PLUS执行&#xff0c;会在执行后显示查询的执行计划和统计信息 SET AUTOTRACE ON;SELECT * FROM your_table WHERE column_name value;SET AUTOTRACE OFF;PLSQL PLSQL查询sql界面&#xff0c;鼠标右键&#xff0c;点击执行计划&#xff0c;会出现sql的执行计…...

el-table,列表合并,根据名称列名称相同的品名将其它列值相同的进行合并

el-table,列表合并,根据名称列名称相同的品名将其它列值相同的进行合并,并且不能跨品名合并 如图 用到el-table合并行的方法合并 tableSpanMethod({ row, column, rowIndex, columnIndex }) {if (column.property "materielName") {//合并商品名const _row this…...

微信小程序显示二维码?

wxml <canvas style"width: 100%;height: 100%;margin-left: 20%;" id"Canvase" type"2d"></canvas> js // pages/code/code.js Page({/*** 页面的初始数据*/data: {code: ,},/*** 生命周期函数--监听页面加载*/onLoad(options) {…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案

在移动互联网营销竞争白热化的当下&#xff0c;推客小程序系统凭借其裂变传播、精准营销等特性&#xff0c;成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径&#xff0c;助力开发者打造具有市场竞争力的营销工具。​ 一、系统核心功能架构&…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...