当前位置: 首页 > news >正文

AcWing 3709:单链表节点交换 ← 四川大学考研机试题

【题目来源】
https://www.acwing.com/problem/content/3712/

【题目描述】
输入一个单链表,依次交换前2个数,第3、4个数,第5、6个数,…,以此类推,直到操作完整个链表。
如果链表长度是奇数,则最后一个数不用操作。
输出交换之后的链表。

【输入格式】
第一行包含整数 n,表示节点数量。
第二行包含 n 个整数,表示每个节点的值。

【输出格式】
共一行,输出交换后的链表。

【数据范围】
1≤n≤100,
节点取值范围 [1,100]。

【输入样例】
5
1 2 3 4 5

【输出样例】
2 1 4 3 5

【算法分析】
本题是四川大学考研机试题。
在编码时,不要一看到单链表,就去用链式结构实现,这样就势必增加了编码复杂度。可以考虑用数组模拟实现,可大大简化编码难度。

【算法代码】

#include <bits/stdc++.h>
using namespace std;const int maxn=105;
int a[maxn];int main() {int n;cin>>n;for(int i=1; i<=n; i++) cin>>a[i];int t=n;if(n%2!=0) t--;for(int i=1; i<t; i+=2) swap(a[i],a[i+1]);for(int i=1; i<=n; i++) cout<<a[i]<<" ";
}/*
in:
5
1 2 3 4 5out:
2 1 4 3 5
*/





 

相关文章:

AcWing 3709:单链表节点交换 ← 四川大学考研机试题

【题目来源】 https://www.acwing.com/problem/content/3712/【题目描述】 输入一个单链表&#xff0c;依次交换前2个数&#xff0c;第3、4个数&#xff0c;第5、6个数&#xff0c;…&#xff0c;以此类推&#xff0c;直到操作完整个链表。 如果链表长度是奇数&#xff0c;则最…...

RocketMQ源码 Broker-ConsumerFilterManager 消费者数据过滤管理组件源码分析

前言 ConsumerFilterManager 继承了ConfigManager配置管理组件&#xff0c;拥有将内存数据持久化到磁盘文件consumerFilter.json的能力。它主要负责&#xff0c;对在消费者拉取消息时&#xff0c;进行消息数据过滤&#xff0c;且只针对使用表达式过滤的消费者有效。 源码版本&…...

数据挖掘-07-航空公司客户价值分析(包括数据和代码)

文章目录 0. 数据代码下载1. 背景与挖掘目标2. 导入相关库&#xff0c;加载数据2.1客户基本信息分布a. 绘制会员性别比例饼图b. 绘制会员各级别人数条形图c. 绘制年龄分布图 2.2 客户乘机信息分布分析a. 绘制客户飞行次数箱线图b. 绘制客户总飞行公里数箱线图 2.3 客户积分信息…...

浏览器 css 默认的字体图表

以下是一些常见的浏览器&#xff08;PC端&#xff09;中网站 CSS 默认字体及其对应的字体系列&#xff08;font family&#xff09;&#xff1a; 浏览器默认字体字体系列&#xff08;font family&#xff09;ChromeArial, sans-serif“Arial”, “Helvetica Neue”, Helvetica…...

JAVA:注册表窗口的实现

目录 题目要求&#xff1a; 思路大意&#xff1a; 窗体的实现&#xff1a; 窗口A&#xff1a; 窗口B&#xff1a; 窗体之间的构思&#xff1a; 关键代码的实现&#xff1a; 窗口A&#xff1a; 封装列表&#xff1a; 窗口B&#xff1a; 题目要求&#xff1a; 使用…...

Liunx Centos 防火墙操作

liunx centos 防火墙 查看防火墙状态 systemctl status firewalld查看已经开放的端口 firewall-cmd --list-ports添加端口3306 firewall-cmd --zonepublic --add-port3306/tcp --permanent重启防火墙 firewall-cmd --reload数据库开放账号可以外网登陆 mysql -u root -p …...

VirtualBox 和 Vagrant 快速安装 Centos7 报错

VirtualBox 和 Vagrant 快速安装 Centos7 报错 今天尝试用 VirtualBox 和 Vagrant 快速安装 Centos7&#xff0c;BUG 多多&#xff01; 1&#xff09;下载 6.1.26 版本 VirtualBox&#xff0c;Windows11 不兼容&#xff1f;&#xff1f;&#xff1f;什么鬼&#xff1f; 解决…...

使用Python进行数学四则运算

当我们讨论到Python中的计算问题时&#xff0c;我们必然涉及到加法运算符&#xff08;&#xff09;、减法运算符&#xff08;-&#xff09;、乘法运算符&#xff08;*&#xff09;以及除法运算符&#xff08;/&#xff09;这四大常见的算术运算。下面&#xff0c;我将为您展示如…...

成都工业学院2021级操作系统专周课程设计FCFS,SSTF,SCAN,LOOK算法的实现

运行环境 操作系统&#xff1a;Windows 11 家庭版 运行软件&#xff1a;CLion 2023.2.2 源代码文件 #include <iostream> #include <vector> #include <algorithm> #include <random> using namespace std;// 生成随机数 int generateRandomNumber…...

【51单片机系列】矩阵按键扩展实验

本文对矩阵按键的一个扩展&#xff0c;利用矩阵按键和动态数码管设计一个简易计算器。代码参考&#xff1a;https://blog.csdn.net/weixin_47060099/article/details/106664393 实现功能&#xff1a;使用矩阵按键&#xff0c;实现一个简易计算器&#xff0c;将计算数据及计算结…...

大数据云计算——Docker环境下部署Hadoop集群及运行集群案列

大数据云计算——Docker环境下部署Hadoop集群及运行集群案列 本文着重介绍了在Docker环境下部署Hadoop集群以及实际案例中的集群运行。首先&#xff0c;文章详细解释了Hadoop的基本概念和其在大数据处理中的重要性&#xff0c;以及为何选择在Docker环境下部署Hadoop集群。接着&…...

计算机网络链路层(期末、考研)

计算机网络总复习链接&#x1f517; 目录 组帧差错控制检错编码纠错编码 流量控制与可靠传输机制流量控制、可靠传输与滑动窗口机制单帧窗口与停止-等待协议多帧滑动窗口与后退N帧协议&#xff08;GBN&#xff09;多帧滑动窗口与选择重传协议 介质访问控制信道划分介质访问控制…...

洛谷 P8794 [蓝桥杯 2022 国 A] 环境治理

文章目录 [蓝桥杯 2022 国 A] 环境治理题目链接题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示 思路解析CODE给点思考 [蓝桥杯 2022 国 A] 环境治理 题目链接 https://www.luogu.com.cn/problem/P8794 题目描述 LQ 国拥有 n n n 个城市&#xff0c;从 0 0 …...

力扣面试150题 | 买卖股票的最佳时期

力扣面试150题 &#xff5c; 买卖股票的最佳时期 题目描述解题思路代码实现 题目描述 121.买卖股票的最佳时期 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一…...

uniapp 之 图片 视频 文件上传

<view class"" style"padding: 24rpx 0"><text>相关资料 <text class"fs-26 color-666">&#xff08;图片、视频、文档不超过9个&#xff09;</text> </text><view class"flex align-center" style&…...

MIT线性代数笔记-第28讲-正定矩阵,最小值

目录 28.正定矩阵&#xff0c;最小值打赏 28.正定矩阵&#xff0c;最小值 由第 26 26 26讲的末尾可知在矩阵为实对称矩阵时&#xff0c;正定矩阵有以下四种判定方法&#xff08;都是充要条件&#xff09;&#xff1a; 所有特征值都为正左上角所有 k k k阶子矩阵行列式都为正&…...

Python:五种算法RFO、GWO、DBO、HHO、SSA求解23个测试函数

一、五种算法介绍 &#xff08;1&#xff09;红狐优化算法&#xff08;Red fox optimization&#xff0c;RFO&#xff09; &#xff08;2&#xff09;灰狼优化算法(Grey Wolf Optimizer&#xff0c;GWO) &#xff08;3&#xff09;蜣螂优化算法&#xff08;Dung beetle opti…...

如何参与开源项目

大家好&#xff0c;受卡哥邀请&#xff0c;和大家分享一下开源活动的相关经验。首先简要自我介绍一下&#xff0c;我目前在一所985研二在读&#xff0c;主要学习大数据方向&#xff0c;从去年开始参与开源活动近一年时间&#xff0c;也对多个Apache框架有所贡献。 由于学校或专…...

twitter开发如何避坑

此篇介绍在twitter开发过程中遇到的坑&#xff08;尤其是费用的坑&#xff09;。 一坑&#xff1a;免费接口少&#xff01; 刚开始申请免费API使用的时候&#xff0c;twitter官方只会给你三个免费接口使用。 发twitter、删推文、查看用户信息。 这三个接口远远不够开发中使用…...

人工智能算法合集

人工智能&#xff08;Artificial Intelligence&#xff0c;AI&#xff09;作为当今世界最热门的技术领域之一&#xff0c;正日益改变着我们的生活方式、工作方式甚至整个社会结构。在人工智能领域中&#xff0c;算法是至关重要的一环&#xff0c;它们是实现人工智能技术应用的核…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...