智能优化算法应用:基于卷积优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于卷积优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于卷积优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.卷积优化算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用卷积优化算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.卷积优化算法
卷积优化算法原理请参考:https://blog.csdn.net/u011835903/article/details/130000907
卷积优化算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
卷积优化算法参数如下:
%% 设定卷积优化优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果
从结果来看,覆盖率在优化过程中不断上升。表明卷积优化算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:

智能优化算法应用:基于卷积优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于卷积优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于卷积优化算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.卷积优化算法4.实验参数设定5.算法结果6.…...
项目中日期封装
官网:Moment.js 中文网项目中安装:npm install moment --save封装:创建一个.js文件 // 日期、时间封装 import moment from moment moment.locale("zh-cn"); const formatTime {getTime: (date) > {return moment().format(YY…...
7.仿若依后端系统业务实践
目录 概述项目实践mybatis 反向生成代码有覆盖问题解决pom.xmlbootstrap.ymlapplication.ymlmaven测试各种校验问题实践单个属性校验级联属性校验接口实体类测试结果自定义关联属性校验接口...
java:4-9键盘输入
文章目录 键盘输入.1 定义.2 步骤.3 演示 键盘输入 .1 定义 在编程中,需要接收用户输入的数据,就可以使用键盘输入语句来获取。Input.java , 需要一个 扫描器(对象), 就是 Scanner .2 步骤 导入该类的所在包package, java.util.*创建该类对象(声明变…...

制作自己的 Docker 容器
软件开发最大的麻烦事之一,就是环境配置。用户必须保证操作系统的设置,各种库和组件的安装,只有它们都正确,软件才能运行。docker从根本上解决问题,软件安装的时候,把原始环境一模一样地复制过来。 以 koa-…...

Linux的账号及权限管理
一.管理用户账号 1.1 用户账户的分类 1.1.1 用户账号的分类 超级用户:(拥有至高无上的权利) root用户是Linux操作系统中默认的超级用户账号,对本主机拥有最高的权限,系统中超级用户是唯一的。普通用户: …...

Flink 状态管理与容错机制(CheckPoint SavePoint)的关系
一、什么是状态 无状态计算的例子: 例如一个加法算子,第一次输入235那么以后我多次数据23的时候得到的结果都是5。得出的结论就是,相同的输入都会得到相同的结果,与次数无关。 有状态计算的例子: 访问量的统计&#x…...
CSS中更加高级的布局手段——定位之绝对定位
定位: - 定位指的就是将指定的元素摆放到页面的任意位置,通过定位可以任意的摆放元素 - 通过position属性来设置元素的定位 -可选值: static: [sttik] 默认值,元素没有开启定位 relative: [relətiv] 开启元素…...

SQL server 数据库练习题及答案(练习3)
一、编程题 公司部门表 department 字段名称 数据类型 约束等 字段描述 id int 主键,自增 部门ID name varchar(32) 非空,唯一 部门名称 description varchar(1024) …...

太绝了!这个食堂服务,戳中了打工人的心巴!
在当今数字化时代,科技的迅猛发展已经渗透到我们生活的方方面面,其中餐饮行业也不例外。食堂作为人们日常生活中不可或缺的一部分,其管理和运营也需要紧跟科技潮流。 智慧收银系统的引入,旨在提高食堂的效率、准确性和服务水平&am…...

围栏中心点
后端返回的数据格式是 [{height: 0,lat: 30.864277169098443,lng:114.35252972024682}{height: 1,lat: 30.864277169098443,lng:114.35252972024682}.........]我们要转换成 33.00494857612568,112.53886564762979;33.00307854503083,112.53728973842954;33.00170296814311,11…...
【go-zero】simple-admin框架 整合ent mysql批量插入 | ent批量插入mysql
一、完整流程 我们需要通过goctls快速生成一个RPC项目 【go-zero】simple-admin 开篇:进击 go-zero 二开框架 simple-admin 加速 go-zero 开发 之 rpc项目快速创建(更新中~) https://ctraplatform.blog.csdn.net/article/details/130087729 1、RPC项目 1.1、.proto synta…...

漏洞复现-泛微OA xmlrpcServlet接口任意文件读取漏洞(附漏洞检测脚本)
免责声明 文章中涉及的漏洞均已修复,敏感信息均已做打码处理,文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为!文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…...

Flink CDC 1.0至3.0回忆录
Flink CDC 1.0至3.0回忆录 一、引言二、CDC概述三、Flink CDC 1.0:扬帆起航3.1 架构设计3.2 版本痛点 四、Flink CDC 2.0:成长突破4.1 DBlog 无锁算法4.2 FLIP-27 架构实现4.3 整体流程 五、Flink CDC 3.0:应运而生六、Flink CDC 的影响和价值…...
c语言例题7
以下程序中,主函数调用了LineMax函数,实现在N行M列的二维数组中,找出每一行上的最大值。请填空。 #define N 3 #define M 4 void LineMax(int x[N][M]) { int i,j,p; for(i0; i<N;i) { p0; for(j1; j<M;j) …...

【Linux驱动】最基本的驱动框架 | LED驱动
🐱作者:一只大喵咪1201 🐱专栏:《Linux驱动》 🔥格言:你只管努力,剩下的交给时间! 目录 🏀最基本的驱动框架⚽驱动程序框架⚽编程 🏀LED驱动⚽配置GPIO⚽编程…...
前端---表单提交
1. 表单属性设置 <form>标签 表示表单标签,定义整体的表单区域 action属性 设置表单数据提交地址method属性 设置表单提交的方式,一般有“GET”方式和“POST”方式, 不区分大小写 2. 表单元素属性设置 name属性 设置表单元素的名称,…...

[C#]Parallel使用
一、 Parallel的使用 1、Parallel.Invoke2、Parallel.For3、Parallel.Foreach二、 Parallel中途退出循环和异常处理 1、当我们使用到Parallel,必然是处理一些比较耗时的操作,当然也很耗CPU和内存,如果我们中途向停止,怎么办呢&…...
docker container 指定gpu设备
1, 在yaml中 Turn on GPU access with Docker Compose | Docker Docs Example of a Compose file for running a service with access to 1 GPU device: services:test:image: nvidia/cuda:12.3.1-base-ubuntu20.04command: nvidia-smideploy:resources:reserva…...

时间Date
你有没有思考过时间问题: 前端为什么可以直接看见时间格式的数据 后端怎么接受的数据,怎么处理的 一般来说:前端传输来数据都是时间格式的字符串,那么后端需要能够解析时间格式的字符串,归功于JSONFormat ,可以解析…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...

免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...