lag-llama源码解读(Lag-Llama: Towards Foundation Models for Time Series Forecasting)
Lag-Llama: Towards Foundation Models for Time Series Forecasting
文章内容:
时间序列预测任务,单变量预测单变量,基于Llama大模型,在zero-shot场景下模型表现优异。创新点,引入滞后特征作为协变量来进行预测。
获得不同频率的lag,来自glunoTS库里面的源码
def _make_lags(middle: int, delta: int) -> np.ndarray:"""Create a set of lags around a middle point including +/- delta."""return np.arange(middle - delta, middle + delta + 1).tolist()def get_lags_for_frequency(freq_str: str,lag_ub: int = 1200,num_lags: Optional[int] = None,num_default_lags: int = 7,
) -> List[int]:"""Generates a list of lags that that are appropriate for the given frequencystring.By default all frequencies have the following lags: [1, 2, 3, 4, 5, 6, 7].Remaining lags correspond to the same `season` (+/- `delta`) in previous`k` cycles. Here `delta` and `k` are chosen according to the existing code.Parameters----------freq_strFrequency string of the form [multiple][granularity] such as "12H","5min", "1D" etc.lag_ubThe maximum value for a lag.num_lagsMaximum number of lags; by default all generated lags are returned.num_default_lagsThe number of default lags; by default it is 7."""# Lags are target values at the same `season` (+/- delta) but in the# previous cycle.def _make_lags_for_second(multiple, num_cycles=3):# We use previous ``num_cycles`` hours to generate lagsreturn [_make_lags(k * 60 // multiple, 2) for k in range(1, num_cycles + 1)]def _make_lags_for_minute(multiple, num_cycles=3):# We use previous ``num_cycles`` hours to generate lagsreturn [_make_lags(k * 60 // multiple, 2) for k in range(1, num_cycles + 1)]def _make_lags_for_hour(multiple, num_cycles=7):# We use previous ``num_cycles`` days to generate lagsreturn [_make_lags(k * 24 // multiple, 1) for k in range(1, num_cycles + 1)]def _make_lags_for_day(multiple, num_cycles=4, days_in_week=7, days_in_month=30):# We use previous ``num_cycles`` weeks to generate lags# We use the last month (in addition to 4 weeks) to generate lag.return [_make_lags(k * days_in_week // multiple, 1)for k in range(1, num_cycles + 1)] + [_make_lags(days_in_month // multiple, 1)]def _make_lags_for_week(multiple, num_cycles=3):# We use previous ``num_cycles`` years to generate lags# Additionally, we use previous 4, 8, 12 weeksreturn [_make_lags(k * 52 // multiple, 1) for k in range(1, num_cycles + 1)] + [[4 // multiple, 8 // multiple, 12 // multiple]]def _make_lags_for_month(multiple, num_cycles=3):# We use previous ``num_cycles`` years to generate lagsreturn [_make_lags(k * 12 // multiple, 1) for k in range(1, num_cycles + 1)]# multiple, granularity = get_granularity(freq_str)offset = to_offset(freq_str)# normalize offset name, so that both `W` and `W-SUN` refer to `W`offset_name = norm_freq_str(offset.name)if offset_name == "A":lags = []elif offset_name == "Q":assert (offset.n == 1), "Only multiple 1 is supported for quarterly. Use x month instead."lags = _make_lags_for_month(offset.n * 3.0)elif offset_name == "M":lags = _make_lags_for_month(offset.n)elif offset_name == "W":lags = _make_lags_for_week(offset.n)elif offset_name == "D":lags = _make_lags_for_day(offset.n) + _make_lags_for_week(offset.n / 7.0)elif offset_name == "B":lags = _make_lags_for_day(offset.n, days_in_week=5, days_in_month=22) + _make_lags_for_week(offset.n / 5.0)elif offset_name == "H":lags = (_make_lags_for_hour(offset.n)+ _make_lags_for_day(offset.n / 24)+ _make_lags_for_week(offset.n / (24 * 7)))# minuteselif offset_name == "T":lags = (_make_lags_for_minute(offset.n)+ _make_lags_for_hour(offset.n / 60)+ _make_lags_for_day(offset.n / (60 * 24))+ _make_lags_for_week(offset.n / (60 * 24 * 7)))# secondelif offset_name == "S":lags = (_make_lags_for_second(offset.n)+ _make_lags_for_minute(offset.n / 60)+ _make_lags_for_hour(offset.n / (60 * 60)))else:raise Exception("invalid frequency")# flatten lags list and filterlags = [int(lag) for sub_list in lags for lag in sub_list if 7 < lag <= lag_ub]lags = list(range(1, num_default_lags + 1)) + sorted(list(set(lags)))return lags[:num_lags]
第一部分,生成以middle为中心,以delta为半径的区间[middle-delta,middle+delta] ,这很好理解,比如一周的周期是7天,周期大小在7天附近波动很正常。
第二部分,对于年月日时分秒这些不同的采样频率,采用不同的具体的函数来确定lags,其中有一个参数num_cycle,进一步利用了周期性,我们考虑间隔1、2、3、…num个周期的时间点之间的联系
原理类似于这张图,这种周期性的重复性体现在邻近的多个周期上
lag的用途
计算各类窗口大小
计算采样窗口大小
window_size = estimator.context_length + max(estimator.lags_seq) + estimator.prediction_length# Here we make a window slightly bigger so that instance sampler can sample from each window# An alternative is to have exact size and use different instance sampler (e.g. ValidationSplitSampler)
window_size = 10 * window_size
# We change ValidationSplitSampler to add min_pastestimator.validation_sampler = ValidationSplitSampler(min_past=estimator.context_length + max(estimator.lags_seq),min_future=estimator.prediction_length,)
- 构建静态特征
lags = lagged_sequence_values(self.lags_seq, prior_input, input, dim=-1)#构建一个包含给定序列的滞后值的数组static_feat = torch.cat((loc.abs().log1p(), scale.log()), dim=-1)
expanded_static_feat = unsqueeze_expand(static_feat, dim=-2, size=lags.shape[-2]
)return torch.cat((lags, expanded_static_feat, time_feat), dim=-1), loc, scale
数据集准备过程
对每个数据集采样,window_size=13500,也挺离谱的
train_data, val_data = [], []for name in TRAIN_DATASET_NAMES:new_data = create_sliding_window_dataset(name, window_size)train_data.append(new_data)new_data = create_sliding_window_dataset(name, window_size, is_train=False)val_data.append(new_data)
采样的具体过程,这里有个问题,样本数量很小的数据集,实际采样窗口大小小于设定的window_size,后续会如何对齐呢?
文章设置单变量预测单变量,所以样本进行了通道分离,同一样本的不同特征被采样为不同的样本
def create_sliding_window_dataset(name, window_size, is_train=True):#划分非重叠的滑动窗口数据集,window_size是对数据集采样的数量,对每个数据集只取前windowsize个样本# Splits each time series into non-overlapping sliding windowsglobal_id = 0freq = get_dataset(name, path=dataset_path).metadata.freq#从数据集中获取时间频率data = ListDataset([], freq=freq)#创建空数据集dataset = get_dataset(name, path=dataset_path).train if is_train else get_dataset(name, path=dataset_path).test#获取原始数据集for x in dataset:windows = []#划分滑动窗口#target:滑动窗口的目标值#start:滑动窗口的起始位置#item_id,唯一标识符#feat_static_cat:静态特征数组for i in range(0, len(x['target']), window_size):windows.append({'target': x['target'][i:i+window_size],'start': x['start'] + i,'item_id': str(global_id),'feat_static_cat': np.array([0]),})global_id += 1data += ListDataset(windows, freq=freq)return data
合并数据集
# Here weights are proportional to the number of time series (=sliding windows)weights = [len(x) for x in train_data]# Here weights are proportinal to the number of individual points in all time series# weights = [sum([len(x["target"]) for x in d]) for d in train_data]train_data = CombinedDataset(train_data, weights=weights)val_data = CombinedDataset(val_data, weights=weights)
class CombinedDataset:def __init__(self, datasets, seed=None, weights=None):self._seed = seedself._datasets = datasetsself._weights = weightsn_datasets = len(datasets)if weights is None:#如果未提供权重,默认平均分配权重self._weights = [1 / n_datasets] * n_datasetsdef __iter__(self):return CombinedDatasetIterator(self._datasets, self._seed, self._weights)def __len__(self):return sum([len(ds) for ds in self._datasets])
网络结构
lagllama
class LagLlamaModel(nn.Module):def __init__(self,max_context_length: int,scaling: str,input_size: int,n_layer: int,n_embd: int,n_head: int,lags_seq: List[int],rope_scaling=None,distr_output=StudentTOutput(),num_parallel_samples: int = 100,) -> None:super().__init__()self.lags_seq = lags_seqconfig = LTSMConfig(n_layer=n_layer,n_embd=n_embd,n_head=n_head,block_size=max_context_length,feature_size=input_size * (len(self.lags_seq)) + 2 * input_size + 6,rope_scaling=rope_scaling,)self.num_parallel_samples = num_parallel_samplesif scaling == "mean":self.scaler = MeanScaler(keepdim=True, dim=1)elif scaling == "std":self.scaler = StdScaler(keepdim=True, dim=1)else:self.scaler = NOPScaler(keepdim=True, dim=1)self.distr_output = distr_outputself.param_proj = self.distr_output.get_args_proj(config.n_embd)self.transformer = nn.ModuleDict(dict(wte=nn.Linear(config.feature_size, config.n_embd),h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),ln_f=RMSNorm(config.n_embd),))
主要是transformer里面首先是一个线性层,然后加了n_layer个Block,最后是RMSNorm,接下来解析Block的代码
Block
class Block(nn.Module):def __init__(self, config: LTSMConfig) -> None:super().__init__()self.rms_1 = RMSNorm(config.n_embd)self.attn = CausalSelfAttention(config)self.rms_2 = RMSNorm(config.n_embd)self.mlp = MLP(config)self.y_cache = Nonedef forward(self, x: torch.Tensor, is_test: bool) -> torch.Tensor:if is_test and self.y_cache is not None:# Only use the most recent one, rest is in cachex = x[:, -1:]x = x + self.attn(self.rms_1(x), is_test)y = x + self.mlp(self.rms_2(x))if is_test:if self.y_cache is None:self.y_cache = y # Build cacheelse:self.y_cache = torch.cat([self.y_cache, y], dim=1)[:, 1:] # Update cachereturn y
代码看到这里不太想继续看了,太多glunoTS库里面的函数了,我完全不熟悉这个库,看起来太痛苦了,还有很多的困惑,最大的困惑就是数据是怎么对齐的,怎么输入到Llama里面的,慢慢看吧
其他
来源
相关文章:

lag-llama源码解读(Lag-Llama: Towards Foundation Models for Time Series Forecasting)
Lag-Llama: Towards Foundation Models for Time Series Forecasting 文章内容: 时间序列预测任务,单变量预测单变量,基于Llama大模型,在zero-shot场景下模型表现优异。创新点,引入滞后特征作为协变量来进行预测。 获得…...

Three.js基础入门介绍——Three.js学习三【借助控制器操作相机】
在Three.js基础入门介绍——Three.js学习二【极简入门】中介绍了如何搭建Three.js开发环境并实现一个包含旋转立方体的场景示例,以此为前提,本篇将引进一个控制器的概念并使用”轨道控制器”(OrbitControls)来达到从不同方向展示场…...

【日志系列】什么是分布式日志系统?
✔️什么是分布式日志系统? 现在,很多应用都是集群部署的,一次请求会因为负载均衡而被路由到不同的服务器上面,这就导致一个应用的日志会分散在不同的服务器上面。 当我们要向通过日志做数据分析,问题排查的时候&#…...

[卷积神经网络]FCOS--仅使用卷积的Anchor Free目标检测
项目源码: FCOShttps://github.com/tianzhi0549/FCOS/ 一、概述 作为一种Anchor Free的目标检测网络,FCOS并不依赖锚框,这点类似于YOLOx和CenterNet,但CenterNet的思路是寻找目标的中心点,而FCOS则是寻找每个像素点&…...

Ubuntu fcitx Install
ubuntu经常出现键盘失灵的问题 查询资料得知应该是Ibus框架的问题 于是需要安装fcitx框架和搜狗拼音 sudo apt update sudo apt install fcitx 设置fcitx开机自启动(建议) sudo cp /usr/share/applications/fcitx.desktop /etc/xdg/autostart/ 然后…...
【Makefile/GNU Make】知识总结
文章目录 1. 总体认识2. 编写Makefile2.1. Makefile的组成2.2. Makefile文件名2.3. 包含其他Makefile 3. 编写规则4. 编写规则中的构建命令5. 如何使用变量6. 条件判断7. 转换文本的函数8. 如何运行make9. 使用模糊规则10. 使用make来更新存档文件11. 扩展GNU make12. 集成GNU …...

腾讯云轻量服务器和云服务器CVM该怎么选?区别一览
腾讯云轻量服务器和云服务器CVM该怎么选?不差钱选云服务器CVM,追求性价比选择轻量应用服务器,轻量真优惠呀,活动 https://curl.qcloud.com/oRMoSucP 轻量应用服务器2核2G3M价格62元一年、2核2G4M价格118元一年,540元三…...

MySQL定时备份实现
一、备份数据库 –all-databases 备份所有数据库 /opt/mysqlcopy/all_$(date “%Y-%m-%d %H:%M:%S”).sql 备份地址 docker exec -it 容器名称 sh -c "mysqldump -u root -ppassword --all-databases > /opt/mysqlcopy/all_$(date "%Y-%m-%d %H:%M:%S").sq…...

Nginx 不同源Https请求Http 报strict-origin-when-cross-origin
原因: nginx代理配置url指向只开放了/* 而我/*/*多了一层路径 成功:...

openGauss学习笔记-175 openGauss 数据库运维-备份与恢复-导入数据-管理并发写入操作示例
文章目录 openGauss学习笔记-175 openGauss 数据库运维-备份与恢复-导入数据-管理并发写入操作示例175.1 相同表的INSERT和DELETE并发175.2 相同表的并发INSERT175.3 相同表的并发UPDATE175.4 数据导入和查询的并发 openGauss学习笔记-175 openGauss 数据库运维-备份与恢复-导入…...
pnpm、npm、yarn是什么?怎么选择?
pnpm、npm、yarn三者是前端常用的包管理器,那么他们有什么区别呢? 1. npm (Node Package Manager) npm是Node.js的默认包管理器。自Node.js发布以来,npm就一直作为它的一个组成部分存在,因此,安装Node.js时也会自动安…...
MySQL8 一键部署
#!/bin/bash ### 定义变量 mysql_download_urlhttps://cdn.mysql.com//Downloads/MySQL-8.0/mysql-8.0.33-linux-glibc2.12-x86_64.tar.xz mysql_package_namemysql-8.0.33-linux-glibc2.12-x86_64.tar.xz mysql_dec_namemysql-8.0.33-linux-glibc2.12-x86_64 mysql_download_…...

12 UVM Driver
目录 12.1 uvm_driver class hierarchy 12.2 How to write driver code? 12.3 UVM Driver example 12.4 How to get sequence items from the sequencer? 12.5 UVM driver methods 12.5.1 Using get_next_item/ try_next_item and item_done methods 12.5.2 Using get…...
“暂存”校验逻辑探讨
1、背景 在业务中可能会遇到这种场景,前端页面元素多且复杂,一次性填完提交耗时很长,中间中断面临着丢失数据的风险。针对这个问题,“暂存”应运而生。 那“暂存”的时候,是否需要对数据校验,如何进行校验…...

探究element-ui 2.15.8中<el-input>的keydown事件无效问题
一、问题描述 今天看到一个问题,在用Vue2element-ui 2.15.8开发时,使用input组件绑定keydown事件没有任何效果。 <template><div id"app"><el-input v-model"content" placeholder"请输入" keydown&quo…...

Unity 代码控制Text自适应文本高度
在使用代码给Text赋值时,且文本有多段,并需要根据实际文本高度适配Text组件的高度时,可以使用以下方法: //Text文本 public TextMeshProUGUI text;void Start() {//代码赋值文本text.text "好!\n很好!\n非常好!";//获…...

TiDB 7.1 多租户在中泰证券中的应用
本文详细介绍了中泰证券在系统国产化改造项目中采用 TiDB 多租户技术的实施过程。文章分析了中泰证券数据库系统现状以及引入 TiDB 资源管控技术的必要性,探讨了 TiDB 多租户的关键特性,并阐述了在实际应用中的具体操作步骤。通过该技术的应用࿰…...

嵌入式-stm32-SR04超声波测距介绍及实战
一:超声波传感器介绍 1.1、SR04超声波测距硬件模块 1.2、SR04的四个IO口 vcc:提供电源5V gnd:接地 Trig:是**发送**声波信号的触发器 Echo:是**接收**回波信号的引脚 当TRIG信号被触发时,传感器会发送一定频率的声波信号,该信号被反射后&am…...

智能优化算法应用:基于白鲸算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于白鲸算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于白鲸算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.白鲸算法4.实验参数设定5.算法结果6.参考文献7.MA…...

mac m1芯片 pytorch安装及gpu性能测试
pytorch 使用mac的m1芯片进行模型训练。 #小结:在数据量小和模型参数少,batch_size小时,cpu训练更快(原因:每次训练时数据需要放入GPU中,由于batch_size小。数据放入gpu比模型计算时间还长) 在…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
【HTTP三个基础问题】
面试官您好!HTTP是超文本传输协议,是互联网上客户端和服务器之间传输超文本数据(比如文字、图片、音频、视频等)的核心协议,当前互联网应用最广泛的版本是HTTP1.1,它基于经典的C/S模型,也就是客…...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...