lag-llama源码解读(Lag-Llama: Towards Foundation Models for Time Series Forecasting)
Lag-Llama: Towards Foundation Models for Time Series Forecasting
文章内容:
时间序列预测任务,单变量预测单变量,基于Llama大模型,在zero-shot场景下模型表现优异。创新点,引入滞后特征作为协变量来进行预测。
获得不同频率的lag,来自glunoTS库里面的源码
def _make_lags(middle: int, delta: int) -> np.ndarray:"""Create a set of lags around a middle point including +/- delta."""return np.arange(middle - delta, middle + delta + 1).tolist()def get_lags_for_frequency(freq_str: str,lag_ub: int = 1200,num_lags: Optional[int] = None,num_default_lags: int = 7,
) -> List[int]:"""Generates a list of lags that that are appropriate for the given frequencystring.By default all frequencies have the following lags: [1, 2, 3, 4, 5, 6, 7].Remaining lags correspond to the same `season` (+/- `delta`) in previous`k` cycles. Here `delta` and `k` are chosen according to the existing code.Parameters----------freq_strFrequency string of the form [multiple][granularity] such as "12H","5min", "1D" etc.lag_ubThe maximum value for a lag.num_lagsMaximum number of lags; by default all generated lags are returned.num_default_lagsThe number of default lags; by default it is 7."""# Lags are target values at the same `season` (+/- delta) but in the# previous cycle.def _make_lags_for_second(multiple, num_cycles=3):# We use previous ``num_cycles`` hours to generate lagsreturn [_make_lags(k * 60 // multiple, 2) for k in range(1, num_cycles + 1)]def _make_lags_for_minute(multiple, num_cycles=3):# We use previous ``num_cycles`` hours to generate lagsreturn [_make_lags(k * 60 // multiple, 2) for k in range(1, num_cycles + 1)]def _make_lags_for_hour(multiple, num_cycles=7):# We use previous ``num_cycles`` days to generate lagsreturn [_make_lags(k * 24 // multiple, 1) for k in range(1, num_cycles + 1)]def _make_lags_for_day(multiple, num_cycles=4, days_in_week=7, days_in_month=30):# We use previous ``num_cycles`` weeks to generate lags# We use the last month (in addition to 4 weeks) to generate lag.return [_make_lags(k * days_in_week // multiple, 1)for k in range(1, num_cycles + 1)] + [_make_lags(days_in_month // multiple, 1)]def _make_lags_for_week(multiple, num_cycles=3):# We use previous ``num_cycles`` years to generate lags# Additionally, we use previous 4, 8, 12 weeksreturn [_make_lags(k * 52 // multiple, 1) for k in range(1, num_cycles + 1)] + [[4 // multiple, 8 // multiple, 12 // multiple]]def _make_lags_for_month(multiple, num_cycles=3):# We use previous ``num_cycles`` years to generate lagsreturn [_make_lags(k * 12 // multiple, 1) for k in range(1, num_cycles + 1)]# multiple, granularity = get_granularity(freq_str)offset = to_offset(freq_str)# normalize offset name, so that both `W` and `W-SUN` refer to `W`offset_name = norm_freq_str(offset.name)if offset_name == "A":lags = []elif offset_name == "Q":assert (offset.n == 1), "Only multiple 1 is supported for quarterly. Use x month instead."lags = _make_lags_for_month(offset.n * 3.0)elif offset_name == "M":lags = _make_lags_for_month(offset.n)elif offset_name == "W":lags = _make_lags_for_week(offset.n)elif offset_name == "D":lags = _make_lags_for_day(offset.n) + _make_lags_for_week(offset.n / 7.0)elif offset_name == "B":lags = _make_lags_for_day(offset.n, days_in_week=5, days_in_month=22) + _make_lags_for_week(offset.n / 5.0)elif offset_name == "H":lags = (_make_lags_for_hour(offset.n)+ _make_lags_for_day(offset.n / 24)+ _make_lags_for_week(offset.n / (24 * 7)))# minuteselif offset_name == "T":lags = (_make_lags_for_minute(offset.n)+ _make_lags_for_hour(offset.n / 60)+ _make_lags_for_day(offset.n / (60 * 24))+ _make_lags_for_week(offset.n / (60 * 24 * 7)))# secondelif offset_name == "S":lags = (_make_lags_for_second(offset.n)+ _make_lags_for_minute(offset.n / 60)+ _make_lags_for_hour(offset.n / (60 * 60)))else:raise Exception("invalid frequency")# flatten lags list and filterlags = [int(lag) for sub_list in lags for lag in sub_list if 7 < lag <= lag_ub]lags = list(range(1, num_default_lags + 1)) + sorted(list(set(lags)))return lags[:num_lags]
第一部分,生成以middle为中心,以delta为半径的区间[middle-delta,middle+delta] ,这很好理解,比如一周的周期是7天,周期大小在7天附近波动很正常。

第二部分,对于年月日时分秒这些不同的采样频率,采用不同的具体的函数来确定lags,其中有一个参数num_cycle,进一步利用了周期性,我们考虑间隔1、2、3、…num个周期的时间点之间的联系

原理类似于这张图,这种周期性的重复性体现在邻近的多个周期上

lag的用途
计算各类窗口大小
计算采样窗口大小
window_size = estimator.context_length + max(estimator.lags_seq) + estimator.prediction_length# Here we make a window slightly bigger so that instance sampler can sample from each window# An alternative is to have exact size and use different instance sampler (e.g. ValidationSplitSampler)
window_size = 10 * window_size
# We change ValidationSplitSampler to add min_pastestimator.validation_sampler = ValidationSplitSampler(min_past=estimator.context_length + max(estimator.lags_seq),min_future=estimator.prediction_length,)
- 构建静态特征
lags = lagged_sequence_values(self.lags_seq, prior_input, input, dim=-1)#构建一个包含给定序列的滞后值的数组static_feat = torch.cat((loc.abs().log1p(), scale.log()), dim=-1)
expanded_static_feat = unsqueeze_expand(static_feat, dim=-2, size=lags.shape[-2]
)return torch.cat((lags, expanded_static_feat, time_feat), dim=-1), loc, scale
数据集准备过程
对每个数据集采样,window_size=13500,也挺离谱的
train_data, val_data = [], []for name in TRAIN_DATASET_NAMES:new_data = create_sliding_window_dataset(name, window_size)train_data.append(new_data)new_data = create_sliding_window_dataset(name, window_size, is_train=False)val_data.append(new_data)
采样的具体过程,这里有个问题,样本数量很小的数据集,实际采样窗口大小小于设定的window_size,后续会如何对齐呢?
文章设置单变量预测单变量,所以样本进行了通道分离,同一样本的不同特征被采样为不同的样本
def create_sliding_window_dataset(name, window_size, is_train=True):#划分非重叠的滑动窗口数据集,window_size是对数据集采样的数量,对每个数据集只取前windowsize个样本# Splits each time series into non-overlapping sliding windowsglobal_id = 0freq = get_dataset(name, path=dataset_path).metadata.freq#从数据集中获取时间频率data = ListDataset([], freq=freq)#创建空数据集dataset = get_dataset(name, path=dataset_path).train if is_train else get_dataset(name, path=dataset_path).test#获取原始数据集for x in dataset:windows = []#划分滑动窗口#target:滑动窗口的目标值#start:滑动窗口的起始位置#item_id,唯一标识符#feat_static_cat:静态特征数组for i in range(0, len(x['target']), window_size):windows.append({'target': x['target'][i:i+window_size],'start': x['start'] + i,'item_id': str(global_id),'feat_static_cat': np.array([0]),})global_id += 1data += ListDataset(windows, freq=freq)return data
合并数据集
# Here weights are proportional to the number of time series (=sliding windows)weights = [len(x) for x in train_data]# Here weights are proportinal to the number of individual points in all time series# weights = [sum([len(x["target"]) for x in d]) for d in train_data]train_data = CombinedDataset(train_data, weights=weights)val_data = CombinedDataset(val_data, weights=weights)
class CombinedDataset:def __init__(self, datasets, seed=None, weights=None):self._seed = seedself._datasets = datasetsself._weights = weightsn_datasets = len(datasets)if weights is None:#如果未提供权重,默认平均分配权重self._weights = [1 / n_datasets] * n_datasetsdef __iter__(self):return CombinedDatasetIterator(self._datasets, self._seed, self._weights)def __len__(self):return sum([len(ds) for ds in self._datasets])
网络结构
lagllama
class LagLlamaModel(nn.Module):def __init__(self,max_context_length: int,scaling: str,input_size: int,n_layer: int,n_embd: int,n_head: int,lags_seq: List[int],rope_scaling=None,distr_output=StudentTOutput(),num_parallel_samples: int = 100,) -> None:super().__init__()self.lags_seq = lags_seqconfig = LTSMConfig(n_layer=n_layer,n_embd=n_embd,n_head=n_head,block_size=max_context_length,feature_size=input_size * (len(self.lags_seq)) + 2 * input_size + 6,rope_scaling=rope_scaling,)self.num_parallel_samples = num_parallel_samplesif scaling == "mean":self.scaler = MeanScaler(keepdim=True, dim=1)elif scaling == "std":self.scaler = StdScaler(keepdim=True, dim=1)else:self.scaler = NOPScaler(keepdim=True, dim=1)self.distr_output = distr_outputself.param_proj = self.distr_output.get_args_proj(config.n_embd)self.transformer = nn.ModuleDict(dict(wte=nn.Linear(config.feature_size, config.n_embd),h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),ln_f=RMSNorm(config.n_embd),))
主要是transformer里面首先是一个线性层,然后加了n_layer个Block,最后是RMSNorm,接下来解析Block的代码

Block
class Block(nn.Module):def __init__(self, config: LTSMConfig) -> None:super().__init__()self.rms_1 = RMSNorm(config.n_embd)self.attn = CausalSelfAttention(config)self.rms_2 = RMSNorm(config.n_embd)self.mlp = MLP(config)self.y_cache = Nonedef forward(self, x: torch.Tensor, is_test: bool) -> torch.Tensor:if is_test and self.y_cache is not None:# Only use the most recent one, rest is in cachex = x[:, -1:]x = x + self.attn(self.rms_1(x), is_test)y = x + self.mlp(self.rms_2(x))if is_test:if self.y_cache is None:self.y_cache = y # Build cacheelse:self.y_cache = torch.cat([self.y_cache, y], dim=1)[:, 1:] # Update cachereturn y
代码看到这里不太想继续看了,太多glunoTS库里面的函数了,我完全不熟悉这个库,看起来太痛苦了,还有很多的困惑,最大的困惑就是数据是怎么对齐的,怎么输入到Llama里面的,慢慢看吧
其他
来源

相关文章:
lag-llama源码解读(Lag-Llama: Towards Foundation Models for Time Series Forecasting)
Lag-Llama: Towards Foundation Models for Time Series Forecasting 文章内容: 时间序列预测任务,单变量预测单变量,基于Llama大模型,在zero-shot场景下模型表现优异。创新点,引入滞后特征作为协变量来进行预测。 获得…...
Three.js基础入门介绍——Three.js学习三【借助控制器操作相机】
在Three.js基础入门介绍——Three.js学习二【极简入门】中介绍了如何搭建Three.js开发环境并实现一个包含旋转立方体的场景示例,以此为前提,本篇将引进一个控制器的概念并使用”轨道控制器”(OrbitControls)来达到从不同方向展示场…...
【日志系列】什么是分布式日志系统?
✔️什么是分布式日志系统? 现在,很多应用都是集群部署的,一次请求会因为负载均衡而被路由到不同的服务器上面,这就导致一个应用的日志会分散在不同的服务器上面。 当我们要向通过日志做数据分析,问题排查的时候&#…...
[卷积神经网络]FCOS--仅使用卷积的Anchor Free目标检测
项目源码: FCOShttps://github.com/tianzhi0549/FCOS/ 一、概述 作为一种Anchor Free的目标检测网络,FCOS并不依赖锚框,这点类似于YOLOx和CenterNet,但CenterNet的思路是寻找目标的中心点,而FCOS则是寻找每个像素点&…...
Ubuntu fcitx Install
ubuntu经常出现键盘失灵的问题 查询资料得知应该是Ibus框架的问题 于是需要安装fcitx框架和搜狗拼音 sudo apt update sudo apt install fcitx 设置fcitx开机自启动(建议) sudo cp /usr/share/applications/fcitx.desktop /etc/xdg/autostart/ 然后…...
【Makefile/GNU Make】知识总结
文章目录 1. 总体认识2. 编写Makefile2.1. Makefile的组成2.2. Makefile文件名2.3. 包含其他Makefile 3. 编写规则4. 编写规则中的构建命令5. 如何使用变量6. 条件判断7. 转换文本的函数8. 如何运行make9. 使用模糊规则10. 使用make来更新存档文件11. 扩展GNU make12. 集成GNU …...
腾讯云轻量服务器和云服务器CVM该怎么选?区别一览
腾讯云轻量服务器和云服务器CVM该怎么选?不差钱选云服务器CVM,追求性价比选择轻量应用服务器,轻量真优惠呀,活动 https://curl.qcloud.com/oRMoSucP 轻量应用服务器2核2G3M价格62元一年、2核2G4M价格118元一年,540元三…...
MySQL定时备份实现
一、备份数据库 –all-databases 备份所有数据库 /opt/mysqlcopy/all_$(date “%Y-%m-%d %H:%M:%S”).sql 备份地址 docker exec -it 容器名称 sh -c "mysqldump -u root -ppassword --all-databases > /opt/mysqlcopy/all_$(date "%Y-%m-%d %H:%M:%S").sq…...
Nginx 不同源Https请求Http 报strict-origin-when-cross-origin
原因: nginx代理配置url指向只开放了/* 而我/*/*多了一层路径 成功:...
openGauss学习笔记-175 openGauss 数据库运维-备份与恢复-导入数据-管理并发写入操作示例
文章目录 openGauss学习笔记-175 openGauss 数据库运维-备份与恢复-导入数据-管理并发写入操作示例175.1 相同表的INSERT和DELETE并发175.2 相同表的并发INSERT175.3 相同表的并发UPDATE175.4 数据导入和查询的并发 openGauss学习笔记-175 openGauss 数据库运维-备份与恢复-导入…...
pnpm、npm、yarn是什么?怎么选择?
pnpm、npm、yarn三者是前端常用的包管理器,那么他们有什么区别呢? 1. npm (Node Package Manager) npm是Node.js的默认包管理器。自Node.js发布以来,npm就一直作为它的一个组成部分存在,因此,安装Node.js时也会自动安…...
MySQL8 一键部署
#!/bin/bash ### 定义变量 mysql_download_urlhttps://cdn.mysql.com//Downloads/MySQL-8.0/mysql-8.0.33-linux-glibc2.12-x86_64.tar.xz mysql_package_namemysql-8.0.33-linux-glibc2.12-x86_64.tar.xz mysql_dec_namemysql-8.0.33-linux-glibc2.12-x86_64 mysql_download_…...
12 UVM Driver
目录 12.1 uvm_driver class hierarchy 12.2 How to write driver code? 12.3 UVM Driver example 12.4 How to get sequence items from the sequencer? 12.5 UVM driver methods 12.5.1 Using get_next_item/ try_next_item and item_done methods 12.5.2 Using get…...
“暂存”校验逻辑探讨
1、背景 在业务中可能会遇到这种场景,前端页面元素多且复杂,一次性填完提交耗时很长,中间中断面临着丢失数据的风险。针对这个问题,“暂存”应运而生。 那“暂存”的时候,是否需要对数据校验,如何进行校验…...
探究element-ui 2.15.8中<el-input>的keydown事件无效问题
一、问题描述 今天看到一个问题,在用Vue2element-ui 2.15.8开发时,使用input组件绑定keydown事件没有任何效果。 <template><div id"app"><el-input v-model"content" placeholder"请输入" keydown&quo…...
Unity 代码控制Text自适应文本高度
在使用代码给Text赋值时,且文本有多段,并需要根据实际文本高度适配Text组件的高度时,可以使用以下方法: //Text文本 public TextMeshProUGUI text;void Start() {//代码赋值文本text.text "好!\n很好!\n非常好!";//获…...
TiDB 7.1 多租户在中泰证券中的应用
本文详细介绍了中泰证券在系统国产化改造项目中采用 TiDB 多租户技术的实施过程。文章分析了中泰证券数据库系统现状以及引入 TiDB 资源管控技术的必要性,探讨了 TiDB 多租户的关键特性,并阐述了在实际应用中的具体操作步骤。通过该技术的应用࿰…...
嵌入式-stm32-SR04超声波测距介绍及实战
一:超声波传感器介绍 1.1、SR04超声波测距硬件模块 1.2、SR04的四个IO口 vcc:提供电源5V gnd:接地 Trig:是**发送**声波信号的触发器 Echo:是**接收**回波信号的引脚 当TRIG信号被触发时,传感器会发送一定频率的声波信号,该信号被反射后&am…...
智能优化算法应用:基于白鲸算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于白鲸算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于白鲸算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.白鲸算法4.实验参数设定5.算法结果6.参考文献7.MA…...
mac m1芯片 pytorch安装及gpu性能测试
pytorch 使用mac的m1芯片进行模型训练。 #小结:在数据量小和模型参数少,batch_size小时,cpu训练更快(原因:每次训练时数据需要放入GPU中,由于batch_size小。数据放入gpu比模型计算时间还长) 在…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
