当前位置: 首页 > news >正文

sklearn学习的一个例子用pycharm jupyter

环境

运行在jupyter 进行开发。即一个WEB端的开发工具。能适时显示开发的输出。后缀用的是ipynb.pycharm也可以支持。但也要提示按装jupyter.
或直接用andcoda
这里我们用pycharm进行项目创建
在这里插入图片描述

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple  jupyterlab
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple  notebook
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib

在这里插入图片描述

将以下的文本复制到本地sklearn/data:

sepal_length	sepal_width	petal_length	petal_width	species
5.1	3.5	1.4	0.2	Iris-setosa
4.9	3	1.4	0.2	Iris-setosa
4.7	3.2	1.3	0.2	Iris-setosa
4.6	3.1	1.5	0.2	Iris-setosa
5	3.6	1.4	0.2	Iris-setosa
5.4	3.9	1.7	0.4	Iris-setosa
4.6	3.4	1.4	0.3	Iris-setosa
5	3.4	1.5	0.2	Iris-setosa
4.4	2.9	1.4	0.2	Iris-setosa
4.9	3.1	1.5	0.1	Iris-setosa
5.4	3.7	1.5	0.2	Iris-setosa
4.8	3.4	1.6	0.2	Iris-setosa
4.8	3	1.4	0.1	Iris-setosa
4.3	3	1.1	0.1	Iris-setosa
5.8	4	1.2	0.2	Iris-setosa
5.7	4.4	1.5	0.4	Iris-setosa
5.4	3.9	1.3	0.4	Iris-setosa
5.1	3.5	1.4	0.3	Iris-setosa
5.7	3.8	1.7	0.3	Iris-setosa
5.1	3.8	1.5	0.3	Iris-setosa
5.4	3.4	1.7	0.2	Iris-setosa
5.1	3.7	1.5	0.4	Iris-setosa
4.6	3.6	1	0.2	Iris-setosa
5.1	3.3	1.7	0.5	Iris-setosa
4.8	3.4	1.9	0.2	Iris-setosa
5	3	1.6	0.2	Iris-setosa
5	3.4	1.6	0.4	Iris-setosa
5.2	3.5	1.5	0.2	Iris-setosa
5.2	3.4	1.4	0.2	Iris-setosa
4.7	3.2	1.6	0.2	Iris-setosa
4.8	3.1	1.6	0.2	Iris-setosa
5.4	3.4	1.5	0.4	Iris-setosa
5.2	4.1	1.5	0.1	Iris-setosa
5.5	4.2	1.4	0.2	Iris-setosa
4.9	3.1	1.5	0.2	Iris-setosa
5	3.2	1.2	0.2	Iris-setosa
5.5	3.5	1.3	0.2	Iris-setosa
4.9	3.6	1.4	0.1	Iris-setosa
4.4	3	1.3	0.2	Iris-setosa
5.1	3.4	1.5	0.2	Iris-setosa
5	3.5	1.3	0.3	Iris-setosa
4.5	2.3	1.3	0.3	Iris-setosa
4.4	3.2	1.3	0.2	Iris-setosa
5	3.5	1.6	0.6	Iris-setosa
5.1	3.8	1.9	0.4	Iris-setosa
4.8	3	1.4	0.3	Iris-setosa
5.1	3.8	1.6	0.2	Iris-setosa
4.6	3.2	1.4	0.2	Iris-setosa
5.3	3.7	1.5	0.2	Iris-setosa
5	3.3	1.4	0.2	Iris-setosa
7	3.2	4.7	1.4	Iris-versicolor
6.4	3.2	4.5	1.5	Iris-versicolor
6.9	3.1	4.9	1.5	Iris-versicolor
5.5	2.3	4	1.3	Iris-versicolor
6.5	2.8	4.6	1.5	Iris-versicolor
5.7	2.8	4.5	1.3	Iris-versicolor
6.3	3.3	4.7	1.6	Iris-versicolor
4.9	2.4	3.3	1	Iris-versicolor
6.6	2.9	4.6	1.3	Iris-versicolor
5.2	2.7	3.9	1.4	Iris-versicolor
5	2	3.5	1	Iris-versicolor
5.9	3	4.2	1.5	Iris-versicolor
6	2.2	4	1	Iris-versicolor
6.1	2.9	4.7	1.4	Iris-versicolor
5.6	2.9	3.6	1.3	Iris-versicolor
6.7	3.1	4.4	1.4	Iris-versicolor
5.6	3	4.5	1.5	Iris-versicolor
5.8	2.7	4.1	1	Iris-versicolor
6.2	2.2	4.5	1.5	Iris-versicolor
5.6	2.5	3.9	1.1	Iris-versicolor
5.9	3.2	4.8	1.8	Iris-versicolor
6.1	2.8	4	1.3	Iris-versicolor
6.3	2.5	4.9	1.5	Iris-versicolor
6.1	2.8	4.7	1.2	Iris-versicolor
6.4	2.9	4.3	1.3	Iris-versicolor
6.6	3	4.4	1.4	Iris-versicolor
6.8	2.8	4.8	1.4	Iris-versicolor
6.7	3	5	1.7	Iris-versicolor
6	2.9	4.5	1.5	Iris-versicolor
5.7	2.6	3.5	1	Iris-versicolor
5.5	2.4	3.8	1.1	Iris-versicolor
5.5	2.4	3.7	1	Iris-versicolor
5.8	2.7	3.9	1.2	Iris-versicolor
6	2.7	5.1	1.6	Iris-versicolor
5.4	3	4.5	1.5	Iris-versicolor
6	3.4	4.5	1.6	Iris-versicolor
6.7	3.1	4.7	1.5	Iris-versicolor
6.3	2.3	4.4	1.3	Iris-versicolor
5.6	3	4.1	1.3	Iris-versicolor
5.5	2.5	4	1.3	Iris-versicolor
5.5	2.6	4.4	1.2	Iris-versicolor
6.1	3	4.6	1.4	Iris-versicolor
5.8	2.6	4	1.2	Iris-versicolor
5	2.3	3.3	1	Iris-versicolor
5.6	2.7	4.2	1.3	Iris-versicolor
5.7	3	4.2	1.2	Iris-versicolor
5.7	2.9	4.2	1.3	Iris-versicolor
6.2	2.9	4.3	1.3	Iris-versicolor
5.1	2.5	3	1.1	Iris-versicolor
5.7	2.8	4.1	1.3	Iris-versicolor
6.3	3.3	6	2.5	Iris-virginica
5.8	2.7	5.1	1.9	Iris-virginica
7.1	3	5.9	2.1	Iris-virginica
6.3	2.9	5.6	1.8	Iris-virginica
6.5	3	5.8	2.2	Iris-virginica
7.6	3	6.6	2.1	Iris-virginica
4.9	2.5	4.5	1.7	Iris-virginica
7.3	2.9	6.3	1.8	Iris-virginica
6.7	2.5	5.8	1.8	Iris-virginica
7.2	3.6	6.1	2.5	Iris-virginica
6.5	3.2	5.1	2	Iris-virginica
6.4	2.7	5.3	1.9	Iris-virginica
6.8	3	5.5	2.1	Iris-virginica
5.7	2.5	5	2	Iris-virginica
5.8	2.8	5.1	2.4	Iris-virginica
6.4	3.2	5.3	2.3	Iris-virginica
6.5	3	5.5	1.8	Iris-virginica
7.7	3.8	6.7	2.2	Iris-virginica
7.7	2.6	6.9	2.3	Iris-virginica
6	2.2	5	1.5	Iris-virginica
6.9	3.2	5.7	2.3	Iris-virginica
5.6	2.8	4.9	2	Iris-virginica
7.7	2.8	6.7	2	Iris-virginica
6.3	2.7	4.9	1.8	Iris-virginica
6.7	3.3	5.7	2.1	Iris-virginica
7.2	3.2	6	1.8	Iris-virginica
6.2	2.8	4.8	1.8	Iris-virginica
6.1	3	4.9	1.8	Iris-virginica
6.4	2.8	5.6	2.1	Iris-virginica
7.2	3	5.8	1.6	Iris-virginica
7.4	2.8	6.1	1.9	Iris-virginica
7.9	3.8	6.4	2	Iris-virginica
6.4	2.8	5.6	2.2	Iris-virginica
6.3	2.8	5.1	1.5	Iris-virginica
6.1	2.6	5.6	1.4	Iris-virginica
7.7	3	6.1	2.3	Iris-virginica
6.3	3.4	5.6	2.4	Iris-virginica
6.4	3.1	5.5	1.8	Iris-virginica
6	3	4.8	1.8	Iris-virginica
6.9	3.1	5.4	2.1	Iris-virginica
6.7	3.1	5.6	2.4	Iris-virginica
6.9	3.1	5.1	2.3	Iris-virginica
5.8	2.7	5.1	1.9	Iris-virginica
6.8	3.2	5.9	2.3	Iris-virginica
6.7	3.3	5.7	2.5	Iris-virginica
6.7	3	5.2	2.3	Iris-virginica
6.3	2.5	5	1.9	Iris-virginica
6.5	3	5.2	2	Iris-virginica
6.2	3.4	5.4	2.3	Iris-virginica
5.9	3	5.1	1.8	Iris-virginica

开发

创建一个jupyter的文件在这里插入图片描述这编程界面出现
在这里插入图片描述写代码:
在这里插入图片描述
.ipynb 是 Jupyter Notebook 文件的扩展名。Jupyter Notebook 是一个交互式的 Web 应用程序,用于创建和共享包含实时代码、方程、可视化和叙述性文本的文档。

在 Jupyter Notebook 中,你可以编写 Python 代码,并且代码单元格可以执行。这使得 Jupyter Notebook 成为数据清理、数据分析和可视化、机器学习模型训练等任务的强大工具。

使用 .ipynb 扩展名的原因是因为它表示这个文件是一个 Jupyter Notebook 文件,并且该文件可以使用 Jupyter Notebook 或 JupyterLab 等工具打开和编辑。

此外,Jupyter Notebook 文件也可以保存为 .py 文件,这样它们就可以作为常规的 Python 脚本运行。但是,直接保存为 .py 文件会失去 Jupyter Notebook 的交互性特性,例如代码单元格的执行和实时代码的输出。

import pandas as pd
df=pd.read_csv('data/iris.txt',sep='\t')
df.head() #前五行
df.tail() # 后五行
print(df.shape) #行例数
print(df.info()) # 数据整体信息
print(df.describe()) #统计

在这里插入图片描述 #### 相关教程
sklearn介绍

相关文章:

sklearn学习的一个例子用pycharm jupyter

环境 运行在jupyter 进行开发。即一个WEB端的开发工具。能适时显示开发的输出。后缀用的是ipynb.pycharm也可以支持。但也要提示按装jupyter. 或直接用andcoda 这里我们用pycharm进行项目创建 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyterlab pip ins…...

JVM的生命周期

1.加载(Loading): 在加载阶段,JVM会找到并加载Java字节码文件。加载阶段分为三个步骤:通过类的全限定名找到对应的字节码文件,创建一个与该类相关的Class对象,将类的静态数据结构存储在方法区中…...

ElasticSearch--基本操作

ElasticSearch 完成ES安装 http://101.42.93.208:5601/app/dev_tools#/console 库的操作 创建索引库 请求方式:PUT 请求路径:/索引库名,可以自定义 请求参数:mapping映射 PUT /test {"mappings": {"propertie…...

大数据应用发展史:从搜索引擎时代到机器学习时代

文章目录 搜索引擎时代数据仓库时代数据挖掘时代机器学习时代小结 大数据技术的使用经历了一个发展过程 从最开始的Google在搜索引擎中开始使用大数据技术,到现在无处不在的各种人工智能应用,伴随着大数据技术的发展,大数据应用也从曲高和寡…...

java基础之String的不可变性

目录 概述 String是如何实现不可变的 String为何设计成不可变的 1.缓存和性能优化 2.安全性 3.线程安全性 4.API设计和预测性能 概述 String类的不可变性意味着一旦创建了一个字符串对象,它的值就不能被修改。 String是如何实现不可变的 查看源码 public …...

【JS】Promise详解

概述 在 JavaScript 中,Promise 是一个表示异步操作最终完成或失败的对象。它本质上是一个返回的对象,你可以附加回调函数,而不是将回调传递给函数。 let promise new Promise((resolve, reject) > {let condition true; // 这可以是某…...

原生微信小程序如何动态配置主题颜色及如何调用子组件的方法

一、最终效果 二、步骤 1、在初始化进入项目时,获取当前主题色 2、把主题色定义成全局变量(即在app.js中设置) 3、tabBar也需要定义全局变量,在首页时需要重新赋值 三、具体实现 1、app.js onLaunch () {//获取主题数据this.set…...

Java关键字(1)

Java中的关键字是指被编程语言保留用于特定用途的单词。这些关键字不能用作变量名或标识符。以下是Java中的一些关键字: public:表示公共的,可以被任何类访问。 private:表示私有的,只能被定义该关键字的类访问。 cl…...

【机器学习合集】深度生成模型 ->(个人学习记录笔记)

深度生成模型 深度生成模型基础 1. 监督学习与无监督学习 1.1 监督学习 定义 在真值标签Y的指导下,学习一个映射函数F,使得F(X)Y 判别模型 Discriminative Model,即判别式模型,又称为条件模型,或条件概率模型 生…...

Java将PDF转换为文本

在Java中&#xff0c;你可以使用现有的库来将PDF文件转换为文本。下面是一个简单的示例&#xff0c;使用Apache PDFBox库来实现PDF到文本的转换。首先&#xff0c;确保在你的项目中添加了Apache PDFBox库的依赖。你可以在 Maven 项目中添加以下依赖&#xff1a; <!--Pdf--&g…...

Linux 运维工具之1Panel

一、1Panel 简介 1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。 特点&#xff1a; 快速建站&#xff1a;深度集成 Wordpress 和 Halo&#xff0c;域名绑定、SSL 证书配置等一键搞定&#xff1b;高效管理&#xff1a;通过 Web 端轻松管理 Linux 服务器&#xff0…...

深入了解小红书笔记详情API:为内容创新提供动力

一、小红书笔记详情API简介 小红书笔记详情API是一种允许开发者访问小红书平台上的笔记详细数据的接口。通过这个API&#xff0c;我们可以获取笔记的标题、内容、标签、点赞数、评论数等详细信息。这些数据对于内容创作者和品牌来说至关重要&#xff0c;可以帮助他们了解用户喜…...

Animate 2024(Adobe an2024)

Animate 2024是一款由Adobe公司开发的动画和互动内容创作工具&#xff0c;是Flash的演进版本。Animate 2024为设计师和开发者提供了更丰富的功能&#xff0c;让他们能够创建各种类型的动画、交互式内容和多媒体应用程序。 Animate 2024具有以下特点&#xff1a; 强大的设计工…...

尽量避免删改List

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 学习必须往深处挖&…...

【Linux操作系统】探秘Linux奥秘:用户、组、密码及权限管理的解密与实战

&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《操作系统实验室》&#x1f516;诗赋清音&#xff1a;柳垂轻絮拂人衣&#xff0c;心随风舞梦飞。 山川湖海皆可涉&#xff0c;勇者征途逐星辉。 目录 &#x1fa90;1 初识Linux OS &…...

计算机组成原理复习4

习题 练习题 下列不属于系统总线的为&#xff08;&#xff09; a.数据总线 b.地址总线 c.控制总线 d.片内总线 D 系统总线中地址总线的功能是&#xff08;&#xff09; a.选择主存单元地址 b.选择进行信息传输的设备 c.选择外存地址 d.指定主存和I/O设备接口电路的地址 D 解…...

AutoSAR(基础入门篇)3.3-Autosar中RTE的数据一致性与Interface接口

目录 一、RTE的数据一致性 1、什么是数据一致性 2、数据一致性的实现机制 2.1、利用RTE管理<...

超维空间S2无人机使用说明书——52、初级版——使用PID算法进行基于yolo的目标跟踪

引言&#xff1a;在实际工程项目中&#xff0c;为了提高系统的响应速度和稳定性&#xff0c;往往需要采用一定的控制算法进行目标跟踪。这里抛砖引玉&#xff0c;仅采用简单的PID算法进行目标的跟随控制&#xff0c;目标的识别依然采用yolo。对系统要求更高的&#xff0c;可以对…...

<JavaEE> TCP 的通信机制(一) -- 确认应答 和 超时重传

目录 TCP的通信机制的核心特性 一、确认应答 1&#xff09;什么是确认应答&#xff1f; 2&#xff09;如何“确认”&#xff1f; 3&#xff09;如何“应答”&#xff1f; 二、超时重传 1&#xff09;丢包的概念 2&#xff09;什么是超时重传&#xff1f; 3&#xff09…...

Spark任务调度与数据本地性

Apache Spark是一个分布式计算框架&#xff0c;用于处理大规模数据。了解Spark任务调度与数据本地性是构建高效分布式应用程序的关键。本文将深入探讨Spark任务调度的流程、数据本地性的重要性&#xff0c;并提供丰富的示例代码来帮助大家更好地理解这些概念。 Spark任务调度的…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统&#xff0c;可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析&#xff1a;自动解析Markdown文档结构PPT模板分析&#xff1a;分析PPT模板的布局和风格智能布局决策&#xff1a;匹配内容与合适的PPT布局自动…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...

大数据治理的常见方式

大数据治理的常见方式 大数据治理是确保数据质量、安全性和可用性的系统性方法&#xff0c;以下是几种常见的治理方式&#xff1a; 1. 数据质量管理 核心方法&#xff1a; 数据校验&#xff1a;建立数据校验规则&#xff08;格式、范围、一致性等&#xff09;数据清洗&…...

flow_controllers

关键点&#xff1a; 流控制器类型&#xff1a; 同步&#xff08;Sync&#xff09;&#xff1a;发布操作会阻塞&#xff0c;直到数据被确认发送。异步&#xff08;Async&#xff09;&#xff1a;发布操作非阻塞&#xff0c;数据发送由后台线程处理。纯同步&#xff08;PureSync…...