sklearn学习的一个例子用pycharm jupyter
环境
运行在jupyter 进行开发。即一个WEB端的开发工具。能适时显示开发的输出。后缀用的是ipynb.pycharm也可以支持。但也要提示按装jupyter.
或直接用andcoda
这里我们用pycharm进行项目创建

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyterlab
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple notebook
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pandas
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib

将以下的文本复制到本地sklearn/data:
sepal_length sepal_width petal_length petal_width species
5.1 3.5 1.4 0.2 Iris-setosa
4.9 3 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
4.6 3.1 1.5 0.2 Iris-setosa
5 3.6 1.4 0.2 Iris-setosa
5.4 3.9 1.7 0.4 Iris-setosa
4.6 3.4 1.4 0.3 Iris-setosa
5 3.4 1.5 0.2 Iris-setosa
4.4 2.9 1.4 0.2 Iris-setosa
4.9 3.1 1.5 0.1 Iris-setosa
5.4 3.7 1.5 0.2 Iris-setosa
4.8 3.4 1.6 0.2 Iris-setosa
4.8 3 1.4 0.1 Iris-setosa
4.3 3 1.1 0.1 Iris-setosa
5.8 4 1.2 0.2 Iris-setosa
5.7 4.4 1.5 0.4 Iris-setosa
5.4 3.9 1.3 0.4 Iris-setosa
5.1 3.5 1.4 0.3 Iris-setosa
5.7 3.8 1.7 0.3 Iris-setosa
5.1 3.8 1.5 0.3 Iris-setosa
5.4 3.4 1.7 0.2 Iris-setosa
5.1 3.7 1.5 0.4 Iris-setosa
4.6 3.6 1 0.2 Iris-setosa
5.1 3.3 1.7 0.5 Iris-setosa
4.8 3.4 1.9 0.2 Iris-setosa
5 3 1.6 0.2 Iris-setosa
5 3.4 1.6 0.4 Iris-setosa
5.2 3.5 1.5 0.2 Iris-setosa
5.2 3.4 1.4 0.2 Iris-setosa
4.7 3.2 1.6 0.2 Iris-setosa
4.8 3.1 1.6 0.2 Iris-setosa
5.4 3.4 1.5 0.4 Iris-setosa
5.2 4.1 1.5 0.1 Iris-setosa
5.5 4.2 1.4 0.2 Iris-setosa
4.9 3.1 1.5 0.2 Iris-setosa
5 3.2 1.2 0.2 Iris-setosa
5.5 3.5 1.3 0.2 Iris-setosa
4.9 3.6 1.4 0.1 Iris-setosa
4.4 3 1.3 0.2 Iris-setosa
5.1 3.4 1.5 0.2 Iris-setosa
5 3.5 1.3 0.3 Iris-setosa
4.5 2.3 1.3 0.3 Iris-setosa
4.4 3.2 1.3 0.2 Iris-setosa
5 3.5 1.6 0.6 Iris-setosa
5.1 3.8 1.9 0.4 Iris-setosa
4.8 3 1.4 0.3 Iris-setosa
5.1 3.8 1.6 0.2 Iris-setosa
4.6 3.2 1.4 0.2 Iris-setosa
5.3 3.7 1.5 0.2 Iris-setosa
5 3.3 1.4 0.2 Iris-setosa
7 3.2 4.7 1.4 Iris-versicolor
6.4 3.2 4.5 1.5 Iris-versicolor
6.9 3.1 4.9 1.5 Iris-versicolor
5.5 2.3 4 1.3 Iris-versicolor
6.5 2.8 4.6 1.5 Iris-versicolor
5.7 2.8 4.5 1.3 Iris-versicolor
6.3 3.3 4.7 1.6 Iris-versicolor
4.9 2.4 3.3 1 Iris-versicolor
6.6 2.9 4.6 1.3 Iris-versicolor
5.2 2.7 3.9 1.4 Iris-versicolor
5 2 3.5 1 Iris-versicolor
5.9 3 4.2 1.5 Iris-versicolor
6 2.2 4 1 Iris-versicolor
6.1 2.9 4.7 1.4 Iris-versicolor
5.6 2.9 3.6 1.3 Iris-versicolor
6.7 3.1 4.4 1.4 Iris-versicolor
5.6 3 4.5 1.5 Iris-versicolor
5.8 2.7 4.1 1 Iris-versicolor
6.2 2.2 4.5 1.5 Iris-versicolor
5.6 2.5 3.9 1.1 Iris-versicolor
5.9 3.2 4.8 1.8 Iris-versicolor
6.1 2.8 4 1.3 Iris-versicolor
6.3 2.5 4.9 1.5 Iris-versicolor
6.1 2.8 4.7 1.2 Iris-versicolor
6.4 2.9 4.3 1.3 Iris-versicolor
6.6 3 4.4 1.4 Iris-versicolor
6.8 2.8 4.8 1.4 Iris-versicolor
6.7 3 5 1.7 Iris-versicolor
6 2.9 4.5 1.5 Iris-versicolor
5.7 2.6 3.5 1 Iris-versicolor
5.5 2.4 3.8 1.1 Iris-versicolor
5.5 2.4 3.7 1 Iris-versicolor
5.8 2.7 3.9 1.2 Iris-versicolor
6 2.7 5.1 1.6 Iris-versicolor
5.4 3 4.5 1.5 Iris-versicolor
6 3.4 4.5 1.6 Iris-versicolor
6.7 3.1 4.7 1.5 Iris-versicolor
6.3 2.3 4.4 1.3 Iris-versicolor
5.6 3 4.1 1.3 Iris-versicolor
5.5 2.5 4 1.3 Iris-versicolor
5.5 2.6 4.4 1.2 Iris-versicolor
6.1 3 4.6 1.4 Iris-versicolor
5.8 2.6 4 1.2 Iris-versicolor
5 2.3 3.3 1 Iris-versicolor
5.6 2.7 4.2 1.3 Iris-versicolor
5.7 3 4.2 1.2 Iris-versicolor
5.7 2.9 4.2 1.3 Iris-versicolor
6.2 2.9 4.3 1.3 Iris-versicolor
5.1 2.5 3 1.1 Iris-versicolor
5.7 2.8 4.1 1.3 Iris-versicolor
6.3 3.3 6 2.5 Iris-virginica
5.8 2.7 5.1 1.9 Iris-virginica
7.1 3 5.9 2.1 Iris-virginica
6.3 2.9 5.6 1.8 Iris-virginica
6.5 3 5.8 2.2 Iris-virginica
7.6 3 6.6 2.1 Iris-virginica
4.9 2.5 4.5 1.7 Iris-virginica
7.3 2.9 6.3 1.8 Iris-virginica
6.7 2.5 5.8 1.8 Iris-virginica
7.2 3.6 6.1 2.5 Iris-virginica
6.5 3.2 5.1 2 Iris-virginica
6.4 2.7 5.3 1.9 Iris-virginica
6.8 3 5.5 2.1 Iris-virginica
5.7 2.5 5 2 Iris-virginica
5.8 2.8 5.1 2.4 Iris-virginica
6.4 3.2 5.3 2.3 Iris-virginica
6.5 3 5.5 1.8 Iris-virginica
7.7 3.8 6.7 2.2 Iris-virginica
7.7 2.6 6.9 2.3 Iris-virginica
6 2.2 5 1.5 Iris-virginica
6.9 3.2 5.7 2.3 Iris-virginica
5.6 2.8 4.9 2 Iris-virginica
7.7 2.8 6.7 2 Iris-virginica
6.3 2.7 4.9 1.8 Iris-virginica
6.7 3.3 5.7 2.1 Iris-virginica
7.2 3.2 6 1.8 Iris-virginica
6.2 2.8 4.8 1.8 Iris-virginica
6.1 3 4.9 1.8 Iris-virginica
6.4 2.8 5.6 2.1 Iris-virginica
7.2 3 5.8 1.6 Iris-virginica
7.4 2.8 6.1 1.9 Iris-virginica
7.9 3.8 6.4 2 Iris-virginica
6.4 2.8 5.6 2.2 Iris-virginica
6.3 2.8 5.1 1.5 Iris-virginica
6.1 2.6 5.6 1.4 Iris-virginica
7.7 3 6.1 2.3 Iris-virginica
6.3 3.4 5.6 2.4 Iris-virginica
6.4 3.1 5.5 1.8 Iris-virginica
6 3 4.8 1.8 Iris-virginica
6.9 3.1 5.4 2.1 Iris-virginica
6.7 3.1 5.6 2.4 Iris-virginica
6.9 3.1 5.1 2.3 Iris-virginica
5.8 2.7 5.1 1.9 Iris-virginica
6.8 3.2 5.9 2.3 Iris-virginica
6.7 3.3 5.7 2.5 Iris-virginica
6.7 3 5.2 2.3 Iris-virginica
6.3 2.5 5 1.9 Iris-virginica
6.5 3 5.2 2 Iris-virginica
6.2 3.4 5.4 2.3 Iris-virginica
5.9 3 5.1 1.8 Iris-virginica
开发
创建一个jupyter的文件
这编程界面出现
写代码:

.ipynb 是 Jupyter Notebook 文件的扩展名。Jupyter Notebook 是一个交互式的 Web 应用程序,用于创建和共享包含实时代码、方程、可视化和叙述性文本的文档。
在 Jupyter Notebook 中,你可以编写 Python 代码,并且代码单元格可以执行。这使得 Jupyter Notebook 成为数据清理、数据分析和可视化、机器学习模型训练等任务的强大工具。
使用 .ipynb 扩展名的原因是因为它表示这个文件是一个 Jupyter Notebook 文件,并且该文件可以使用 Jupyter Notebook 或 JupyterLab 等工具打开和编辑。
此外,Jupyter Notebook 文件也可以保存为 .py 文件,这样它们就可以作为常规的 Python 脚本运行。但是,直接保存为 .py 文件会失去 Jupyter Notebook 的交互性特性,例如代码单元格的执行和实时代码的输出。
import pandas as pd
df=pd.read_csv('data/iris.txt',sep='\t')
df.head() #前五行
df.tail() # 后五行
print(df.shape) #行例数
print(df.info()) # 数据整体信息
print(df.describe()) #统计
#### 相关教程
sklearn介绍
相关文章:
sklearn学习的一个例子用pycharm jupyter
环境 运行在jupyter 进行开发。即一个WEB端的开发工具。能适时显示开发的输出。后缀用的是ipynb.pycharm也可以支持。但也要提示按装jupyter. 或直接用andcoda 这里我们用pycharm进行项目创建 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyterlab pip ins…...
JVM的生命周期
1.加载(Loading): 在加载阶段,JVM会找到并加载Java字节码文件。加载阶段分为三个步骤:通过类的全限定名找到对应的字节码文件,创建一个与该类相关的Class对象,将类的静态数据结构存储在方法区中…...
ElasticSearch--基本操作
ElasticSearch 完成ES安装 http://101.42.93.208:5601/app/dev_tools#/console 库的操作 创建索引库 请求方式:PUT 请求路径:/索引库名,可以自定义 请求参数:mapping映射 PUT /test {"mappings": {"propertie…...
大数据应用发展史:从搜索引擎时代到机器学习时代
文章目录 搜索引擎时代数据仓库时代数据挖掘时代机器学习时代小结 大数据技术的使用经历了一个发展过程 从最开始的Google在搜索引擎中开始使用大数据技术,到现在无处不在的各种人工智能应用,伴随着大数据技术的发展,大数据应用也从曲高和寡…...
java基础之String的不可变性
目录 概述 String是如何实现不可变的 String为何设计成不可变的 1.缓存和性能优化 2.安全性 3.线程安全性 4.API设计和预测性能 概述 String类的不可变性意味着一旦创建了一个字符串对象,它的值就不能被修改。 String是如何实现不可变的 查看源码 public …...
【JS】Promise详解
概述 在 JavaScript 中,Promise 是一个表示异步操作最终完成或失败的对象。它本质上是一个返回的对象,你可以附加回调函数,而不是将回调传递给函数。 let promise new Promise((resolve, reject) > {let condition true; // 这可以是某…...
原生微信小程序如何动态配置主题颜色及如何调用子组件的方法
一、最终效果 二、步骤 1、在初始化进入项目时,获取当前主题色 2、把主题色定义成全局变量(即在app.js中设置) 3、tabBar也需要定义全局变量,在首页时需要重新赋值 三、具体实现 1、app.js onLaunch () {//获取主题数据this.set…...
Java关键字(1)
Java中的关键字是指被编程语言保留用于特定用途的单词。这些关键字不能用作变量名或标识符。以下是Java中的一些关键字: public:表示公共的,可以被任何类访问。 private:表示私有的,只能被定义该关键字的类访问。 cl…...
【机器学习合集】深度生成模型 ->(个人学习记录笔记)
深度生成模型 深度生成模型基础 1. 监督学习与无监督学习 1.1 监督学习 定义 在真值标签Y的指导下,学习一个映射函数F,使得F(X)Y 判别模型 Discriminative Model,即判别式模型,又称为条件模型,或条件概率模型 生…...
Java将PDF转换为文本
在Java中,你可以使用现有的库来将PDF文件转换为文本。下面是一个简单的示例,使用Apache PDFBox库来实现PDF到文本的转换。首先,确保在你的项目中添加了Apache PDFBox库的依赖。你可以在 Maven 项目中添加以下依赖: <!--Pdf--&g…...
Linux 运维工具之1Panel
一、1Panel 简介 1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。 特点: 快速建站:深度集成 Wordpress 和 Halo,域名绑定、SSL 证书配置等一键搞定;高效管理:通过 Web 端轻松管理 Linux 服务器࿰…...
深入了解小红书笔记详情API:为内容创新提供动力
一、小红书笔记详情API简介 小红书笔记详情API是一种允许开发者访问小红书平台上的笔记详细数据的接口。通过这个API,我们可以获取笔记的标题、内容、标签、点赞数、评论数等详细信息。这些数据对于内容创作者和品牌来说至关重要,可以帮助他们了解用户喜…...
Animate 2024(Adobe an2024)
Animate 2024是一款由Adobe公司开发的动画和互动内容创作工具,是Flash的演进版本。Animate 2024为设计师和开发者提供了更丰富的功能,让他们能够创建各种类型的动画、交互式内容和多媒体应用程序。 Animate 2024具有以下特点: 强大的设计工…...
尽量避免删改List
作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 学习必须往深处挖&…...
【Linux操作系统】探秘Linux奥秘:用户、组、密码及权限管理的解密与实战
🌈个人主页:Sarapines Programmer🔥 系列专栏:《操作系统实验室》🔖诗赋清音:柳垂轻絮拂人衣,心随风舞梦飞。 山川湖海皆可涉,勇者征途逐星辉。 目录 🪐1 初识Linux OS &…...
计算机组成原理复习4
习题 练习题 下列不属于系统总线的为() a.数据总线 b.地址总线 c.控制总线 d.片内总线 D 系统总线中地址总线的功能是() a.选择主存单元地址 b.选择进行信息传输的设备 c.选择外存地址 d.指定主存和I/O设备接口电路的地址 D 解…...
AutoSAR(基础入门篇)3.3-Autosar中RTE的数据一致性与Interface接口
目录 一、RTE的数据一致性 1、什么是数据一致性 2、数据一致性的实现机制 2.1、利用RTE管理<...
超维空间S2无人机使用说明书——52、初级版——使用PID算法进行基于yolo的目标跟踪
引言:在实际工程项目中,为了提高系统的响应速度和稳定性,往往需要采用一定的控制算法进行目标跟踪。这里抛砖引玉,仅采用简单的PID算法进行目标的跟随控制,目标的识别依然采用yolo。对系统要求更高的,可以对…...
<JavaEE> TCP 的通信机制(一) -- 确认应答 和 超时重传
目录 TCP的通信机制的核心特性 一、确认应答 1)什么是确认应答? 2)如何“确认”? 3)如何“应答”? 二、超时重传 1)丢包的概念 2)什么是超时重传? 3)…...
Spark任务调度与数据本地性
Apache Spark是一个分布式计算框架,用于处理大规模数据。了解Spark任务调度与数据本地性是构建高效分布式应用程序的关键。本文将深入探讨Spark任务调度的流程、数据本地性的重要性,并提供丰富的示例代码来帮助大家更好地理解这些概念。 Spark任务调度的…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
