当前位置: 首页 > news >正文

【机器学习合集】深度生成模型 ->(个人学习记录笔记)

深度生成模型

深度生成模型基础

1. 监督学习与无监督学习

1.1 监督学习
定义
  • 在真值标签Y的指导下,学习一个映射函数F,使得F(X)=Y

在这里插入图片描述

判别模型
  • Discriminative Model,即判别式模型,又称为条件模型,或条件概率模型

在这里插入图片描述

生成模型
  • Generative Model,即生成式模型

在这里插入图片描述

生成模型与判别模型的对比
  • 表达能力,灵活性,学习难度

生成模型和判别模型是深度学习中两种不同类型的模型,它们在任务和目标上有一些关键区别。以下是生成模型和判别模型的对比:

  1. 任务和目标:

    • 生成模型的目标是学习数据的分布,以便生成与训练数据类似的新样本。生成模型试图模拟数据的生成过程。

    • 判别模型的目标是对给定输入数据进行分类或标记。判别模型试图学习输入和输出之间的关联,通常用于分类、回归和检测等任务。

  2. 输出:

    • 生成模型的输出是一个概率分布,通常是条件概率分布,可以用于生成新的数据样本。典型的生成模型包括生成对抗网络(GANs)、变分自动编码器(VAEs)和隐马尔可夫模型(HMMs)。

    • 判别模型的输出是对输入数据的标签、类别或预测值。典型的判别模型包括卷积神经网络(CNNs)、循环神经网络(RNNs)和支持向量机(SVM)等。

  3. 数据需求:

    • 生成模型通常需要更多的数据来学习数据分布,因为它们需要模拟数据的生成过程,涉及到从数据中学习高维概率分布。

    • 判别模型通常需要相对较少的数据,因为它们只需要学习输入和输出之间的关联,而不需要考虑整个数据分布。

  4. 生成新数据:

    • 生成模型具有生成新数据样本的能力,因此它们可以用于图像生成、自然语言生成、音频合成等应用。

    • 判别模型通常不具备生成新数据的能力,它们更适合于分类和预测任务。

  5. 应用领域:

    • 生成模型在生成式任务中广泛应用,如图像生成、文本生成、语音合成等。它们也用于无监督学习、生成对抗网络中的对抗生成器等领域。

    • 判别模型在分类、目标检测、自然语言处理中的分类任务、情感分析等监督学习任务中得到广泛应用。

总的来说,生成模型和判别模型各自适用于不同的任务和应用领域。生成模型关注数据的生成过程和概率分布,判别模型关注输入和输出之间的关系。在实际应用中,选择合适的模型类型取决于任务的性质和数据的特点。有时也可以结合两种类型的模型以提高性能,例如生成模型用于数据增强,判别模型用于分类。

在这里插入图片描述

1.2 无监督学习
定义
  • 没有真值标签Y,学习数据的统计规律或潜在结构

在这里插入图片描述

2. 无监督生成模型

2.1 定义
  • 对输入数据X进行建模,得到概率分布

在这里插入图片描述

2.2 生成模型隐藏空间
  • 直接建模p,(X)非常困难,通过引入不可观测的隐藏变量z

在这里插入图片描述

2.3 无监督生成模型分类
  • 显式概率模型,隐式概率模型

在这里插入图片描述

  • 显式生成模型求解

在这里插入图片描述

  • 隐式密度模型求解

K-1703935797030)]

  • 显式生成模型求解

[外链图片转存中…(img-89LAyfOa-1703935797031)]

  • 隐式密度模型求解

在这里插入图片描述

注:部分内容来自阿里云天池

相关文章:

【机器学习合集】深度生成模型 ->(个人学习记录笔记)

深度生成模型 深度生成模型基础 1. 监督学习与无监督学习 1.1 监督学习 定义 在真值标签Y的指导下,学习一个映射函数F,使得F(X)Y 判别模型 Discriminative Model,即判别式模型,又称为条件模型,或条件概率模型 生…...

Java将PDF转换为文本

在Java中&#xff0c;你可以使用现有的库来将PDF文件转换为文本。下面是一个简单的示例&#xff0c;使用Apache PDFBox库来实现PDF到文本的转换。首先&#xff0c;确保在你的项目中添加了Apache PDFBox库的依赖。你可以在 Maven 项目中添加以下依赖&#xff1a; <!--Pdf--&g…...

Linux 运维工具之1Panel

一、1Panel 简介 1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。 特点&#xff1a; 快速建站&#xff1a;深度集成 Wordpress 和 Halo&#xff0c;域名绑定、SSL 证书配置等一键搞定&#xff1b;高效管理&#xff1a;通过 Web 端轻松管理 Linux 服务器&#xff0…...

深入了解小红书笔记详情API:为内容创新提供动力

一、小红书笔记详情API简介 小红书笔记详情API是一种允许开发者访问小红书平台上的笔记详细数据的接口。通过这个API&#xff0c;我们可以获取笔记的标题、内容、标签、点赞数、评论数等详细信息。这些数据对于内容创作者和品牌来说至关重要&#xff0c;可以帮助他们了解用户喜…...

Animate 2024(Adobe an2024)

Animate 2024是一款由Adobe公司开发的动画和互动内容创作工具&#xff0c;是Flash的演进版本。Animate 2024为设计师和开发者提供了更丰富的功能&#xff0c;让他们能够创建各种类型的动画、交互式内容和多媒体应用程序。 Animate 2024具有以下特点&#xff1a; 强大的设计工…...

尽量避免删改List

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 学习必须往深处挖&…...

【Linux操作系统】探秘Linux奥秘:用户、组、密码及权限管理的解密与实战

&#x1f308;个人主页&#xff1a;Sarapines Programmer&#x1f525; 系列专栏&#xff1a;《操作系统实验室》&#x1f516;诗赋清音&#xff1a;柳垂轻絮拂人衣&#xff0c;心随风舞梦飞。 山川湖海皆可涉&#xff0c;勇者征途逐星辉。 目录 &#x1fa90;1 初识Linux OS &…...

计算机组成原理复习4

习题 练习题 下列不属于系统总线的为&#xff08;&#xff09; a.数据总线 b.地址总线 c.控制总线 d.片内总线 D 系统总线中地址总线的功能是&#xff08;&#xff09; a.选择主存单元地址 b.选择进行信息传输的设备 c.选择外存地址 d.指定主存和I/O设备接口电路的地址 D 解…...

AutoSAR(基础入门篇)3.3-Autosar中RTE的数据一致性与Interface接口

目录 一、RTE的数据一致性 1、什么是数据一致性 2、数据一致性的实现机制 2.1、利用RTE管理<...

超维空间S2无人机使用说明书——52、初级版——使用PID算法进行基于yolo的目标跟踪

引言&#xff1a;在实际工程项目中&#xff0c;为了提高系统的响应速度和稳定性&#xff0c;往往需要采用一定的控制算法进行目标跟踪。这里抛砖引玉&#xff0c;仅采用简单的PID算法进行目标的跟随控制&#xff0c;目标的识别依然采用yolo。对系统要求更高的&#xff0c;可以对…...

<JavaEE> TCP 的通信机制(一) -- 确认应答 和 超时重传

目录 TCP的通信机制的核心特性 一、确认应答 1&#xff09;什么是确认应答&#xff1f; 2&#xff09;如何“确认”&#xff1f; 3&#xff09;如何“应答”&#xff1f; 二、超时重传 1&#xff09;丢包的概念 2&#xff09;什么是超时重传&#xff1f; 3&#xff09…...

Spark任务调度与数据本地性

Apache Spark是一个分布式计算框架&#xff0c;用于处理大规模数据。了解Spark任务调度与数据本地性是构建高效分布式应用程序的关键。本文将深入探讨Spark任务调度的流程、数据本地性的重要性&#xff0c;并提供丰富的示例代码来帮助大家更好地理解这些概念。 Spark任务调度的…...

【论文阅读】Self-Paced Curriculum Learning

论文下载 代码 Supplementary Materials bib: INPROCEEDINGS{,title {Self-Paced Curriculum Learning},author {Lu Jiang and Deyu Meng and Qian Zhao and Shiguang Shan and Alexander Hauptmann},booktitle {AAAI},year {2015},pages {2694--2700} }1. 摘…...

C++简易线程池

原理说明&#xff1a; 1. 线程池创建时&#xff0c;指定线程池的大小thread_size。当有新的函数任务通过函数addFunction ()添加进来后&#xff0c;其中一个线程执行函数。一个线程一次执行一个函数。如果函数数量大与线程池数量&#xff0c;则后来的函数等待。 2. 线程池内部…...

【MATLAB】PSO粒子群优化LSTM(PSO_LSTM)的时间序列预测

有意向获取代码&#xff0c;请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 PSO粒子群优化LSTM&#xff08;PSO-LSTM&#xff09;是一种将粒子群优化算法&#xff08;PSO&#xff09;与长短期记忆神经网络&#xff08;LSTM&#xff09;相结合的混合模型。该算法通过…...

产品经理学习-怎么写PRD文档

目录 瀑布流方法论介绍 产品需求文档&#xff08;PRD&#xff09;介绍 产品需求文档的基本要素 撰写产品需求文档 优先产品需求文档的特点 其他相关文档 瀑布流方法论介绍 瀑布流模型是一种项目的开发和管理的方法论&#xff0c;是敏捷的开发管理方式相对应的另一种方法…...

第3课 获取并播放音频流

本课对应源文件下载链接&#xff1a; https://download.csdn.net/download/XiBuQiuChong/88680079 FFmpeg作为一套庞大的音视频处理开源工具&#xff0c;其源码有太多值得研究的地方。但对于大多数初学者而言&#xff0c;如何快速利用相关的API写出自己想要的东西才是迫切需要…...

Spark编程实验四:Spark Streaming编程

目录 一、目的与要求 二、实验内容 三、实验步骤 1、利用Spark Streaming对三种类型的基本数据源的数据进行处理 2、利用Spark Streaming对Kafka高级数据源的数据进行处理 3、完成DStream的两种有状态转换操作 4、把DStream的数据输出保存到文本文件或MySQL数据库中 四…...

Flink去重计数统计用户数

1.数据 订单表&#xff0c;分别是店铺id、用户id和支付金额 "店铺id,用户id,支付金额", "shop-1,user-1,1", "shop-1,user-2,1", "shop-1,user-2,1", "shop-1,user-3,1", "shop-1,user-3,1", "shop-1,user…...

力扣:62. 不同路径(动态规划,附python二维数组的定义)

题目&#xff1a; 一个机器人位于一个 m x n 网格的左上角 &#xff08;起始点在下图中标记为 “Start” &#xff09;。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角&#xff08;在下图中标记为 “Finish” &#xff09;。 问总共有多少条不同的路径&…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...