Java关键字(1)
Java中的关键字是指被编程语言保留用于特定用途的单词。这些关键字不能用作变量名或标识符。以下是Java中的一些关键字:

public:表示公共的,可以被任何类访问。
private:表示私有的,只能被定义该关键字的类访问。
class:用于定义一个类。
static:表示静态的,可以用于定义静态变量或静态方法。
final:表示不可改变的,可以用于定义常量或不可继承的类。
void:表示无返回值的方法。
if/else:用于条件判断。
for/while:用于循环。
try/catch/finally:用于异常处理。
return:用于从方法中返回值。
这些关键字在Java中具有特定的语法和用法,对于编写Java程序非常重要。要注意避免将关键字用作变量名或标识符,以免引起编译错误。

public关键字
在Java中,public是一个访问修饰符,它可以用于类、方法和变量。当一个类、方法或变量被声明为public时,它们可以被任何其他类访问。
当一个类被声明为public时,这个类可以被其他类访问,即使这些类不在同一个包中。
// MyClass.java
public class MyClass {public void myMethod() {System.out.println("This is a public method");}
}
// AnotherClass.java
public class AnotherClass {public static void main(String[] args) {MyClass obj = new MyClass();obj.myMethod(); // 可以访问MyClass中的public方法}
}
当一个方法被声明为public时,这个方法可以被其他类调用。
// MyClass.java
public class MyClass {public void myMethod() {System.out.println("This is a public method");}
}
// AnotherClass.java
public class AnotherClass {public static void main(String[] args) {MyClass obj = new MyClass();obj.myMethod(); // 可以调用MyClass中的public方法}
}
当一个变量被声明为public时,这个变量可以被其他类访问。
// MyClass.java
public class MyClass {public String myVar = "This is a public variable";
}
// AnotherClass.java
public class AnotherClass {public static void
private:表示私有的,只能被定义该关键字的类访问。
在Java中,private关键字用于限制类中的成员变量和方法的访问范围。当一个成员变量或方法被声明为private时,它只能在声明它的类内部访问,其他类无法直接访问这些private成员。
使用private关键字的主要目的是封装类的内部实现细节,以防止外部类直接访问和修改类的内部状态。这样可以确保类的内部数据不会被意外地修改,从而提高了程序的安全性和稳定性。
而且,private关键字也有助于实现类的信息隐藏,使得类的用户只能通过公开的接口来访问类的功能,而不需要了解类的具体实现细节。
总之,private关键字在Java中扮演了重要的角色,它是实现封装和信息隐藏的重要手段,有助于提高程序的安全性和可维护性。

class:用于定义一个类。
static:表示静态的,可以用于定义静态变量或静态方法。
final:表示不可改变的,可以用于定义常量或不可继承的类。
void:表示无返回值的方法。
if/else:用于条件判断。
for/while:用于循环。
try/catch/finally:用于异常处理。
return:用于从方法中返回值。

相关文章:
Java关键字(1)
Java中的关键字是指被编程语言保留用于特定用途的单词。这些关键字不能用作变量名或标识符。以下是Java中的一些关键字: public:表示公共的,可以被任何类访问。 private:表示私有的,只能被定义该关键字的类访问。 cl…...
【机器学习合集】深度生成模型 ->(个人学习记录笔记)
深度生成模型 深度生成模型基础 1. 监督学习与无监督学习 1.1 监督学习 定义 在真值标签Y的指导下,学习一个映射函数F,使得F(X)Y 判别模型 Discriminative Model,即判别式模型,又称为条件模型,或条件概率模型 生…...
Java将PDF转换为文本
在Java中,你可以使用现有的库来将PDF文件转换为文本。下面是一个简单的示例,使用Apache PDFBox库来实现PDF到文本的转换。首先,确保在你的项目中添加了Apache PDFBox库的依赖。你可以在 Maven 项目中添加以下依赖: <!--Pdf--&g…...
Linux 运维工具之1Panel
一、1Panel 简介 1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。 特点: 快速建站:深度集成 Wordpress 和 Halo,域名绑定、SSL 证书配置等一键搞定;高效管理:通过 Web 端轻松管理 Linux 服务器࿰…...
深入了解小红书笔记详情API:为内容创新提供动力
一、小红书笔记详情API简介 小红书笔记详情API是一种允许开发者访问小红书平台上的笔记详细数据的接口。通过这个API,我们可以获取笔记的标题、内容、标签、点赞数、评论数等详细信息。这些数据对于内容创作者和品牌来说至关重要,可以帮助他们了解用户喜…...
Animate 2024(Adobe an2024)
Animate 2024是一款由Adobe公司开发的动画和互动内容创作工具,是Flash的演进版本。Animate 2024为设计师和开发者提供了更丰富的功能,让他们能够创建各种类型的动画、交互式内容和多媒体应用程序。 Animate 2024具有以下特点: 强大的设计工…...
尽量避免删改List
作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 学习必须往深处挖&…...
【Linux操作系统】探秘Linux奥秘:用户、组、密码及权限管理的解密与实战
🌈个人主页:Sarapines Programmer🔥 系列专栏:《操作系统实验室》🔖诗赋清音:柳垂轻絮拂人衣,心随风舞梦飞。 山川湖海皆可涉,勇者征途逐星辉。 目录 🪐1 初识Linux OS &…...
计算机组成原理复习4
习题 练习题 下列不属于系统总线的为() a.数据总线 b.地址总线 c.控制总线 d.片内总线 D 系统总线中地址总线的功能是() a.选择主存单元地址 b.选择进行信息传输的设备 c.选择外存地址 d.指定主存和I/O设备接口电路的地址 D 解…...
AutoSAR(基础入门篇)3.3-Autosar中RTE的数据一致性与Interface接口
目录 一、RTE的数据一致性 1、什么是数据一致性 2、数据一致性的实现机制 2.1、利用RTE管理<...
超维空间S2无人机使用说明书——52、初级版——使用PID算法进行基于yolo的目标跟踪
引言:在实际工程项目中,为了提高系统的响应速度和稳定性,往往需要采用一定的控制算法进行目标跟踪。这里抛砖引玉,仅采用简单的PID算法进行目标的跟随控制,目标的识别依然采用yolo。对系统要求更高的,可以对…...
<JavaEE> TCP 的通信机制(一) -- 确认应答 和 超时重传
目录 TCP的通信机制的核心特性 一、确认应答 1)什么是确认应答? 2)如何“确认”? 3)如何“应答”? 二、超时重传 1)丢包的概念 2)什么是超时重传? 3)…...
Spark任务调度与数据本地性
Apache Spark是一个分布式计算框架,用于处理大规模数据。了解Spark任务调度与数据本地性是构建高效分布式应用程序的关键。本文将深入探讨Spark任务调度的流程、数据本地性的重要性,并提供丰富的示例代码来帮助大家更好地理解这些概念。 Spark任务调度的…...
【论文阅读】Self-Paced Curriculum Learning
论文下载 代码 Supplementary Materials bib: INPROCEEDINGS{,title {Self-Paced Curriculum Learning},author {Lu Jiang and Deyu Meng and Qian Zhao and Shiguang Shan and Alexander Hauptmann},booktitle {AAAI},year {2015},pages {2694--2700} }1. 摘…...
C++简易线程池
原理说明: 1. 线程池创建时,指定线程池的大小thread_size。当有新的函数任务通过函数addFunction ()添加进来后,其中一个线程执行函数。一个线程一次执行一个函数。如果函数数量大与线程池数量,则后来的函数等待。 2. 线程池内部…...
【MATLAB】PSO粒子群优化LSTM(PSO_LSTM)的时间序列预测
有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 PSO粒子群优化LSTM(PSO-LSTM)是一种将粒子群优化算法(PSO)与长短期记忆神经网络(LSTM)相结合的混合模型。该算法通过…...
产品经理学习-怎么写PRD文档
目录 瀑布流方法论介绍 产品需求文档(PRD)介绍 产品需求文档的基本要素 撰写产品需求文档 优先产品需求文档的特点 其他相关文档 瀑布流方法论介绍 瀑布流模型是一种项目的开发和管理的方法论,是敏捷的开发管理方式相对应的另一种方法…...
第3课 获取并播放音频流
本课对应源文件下载链接: https://download.csdn.net/download/XiBuQiuChong/88680079 FFmpeg作为一套庞大的音视频处理开源工具,其源码有太多值得研究的地方。但对于大多数初学者而言,如何快速利用相关的API写出自己想要的东西才是迫切需要…...
Spark编程实验四:Spark Streaming编程
目录 一、目的与要求 二、实验内容 三、实验步骤 1、利用Spark Streaming对三种类型的基本数据源的数据进行处理 2、利用Spark Streaming对Kafka高级数据源的数据进行处理 3、完成DStream的两种有状态转换操作 4、把DStream的数据输出保存到文本文件或MySQL数据库中 四…...
Flink去重计数统计用户数
1.数据 订单表,分别是店铺id、用户id和支付金额 "店铺id,用户id,支付金额", "shop-1,user-1,1", "shop-1,user-2,1", "shop-1,user-2,1", "shop-1,user-3,1", "shop-1,user-3,1", "shop-1,user…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验
Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...
Unity VR/MR开发-VR开发与传统3D开发的差异
视频讲解链接:【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...
针对药品仓库的效期管理问题,如何利用WMS系统“破局”
案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...
LeetCode 0386.字典序排数:细心总结条件
【LetMeFly】386.字典序排数:细心总结条件 力扣题目链接:https://leetcode.cn/problems/lexicographical-numbers/ 给你一个整数 n ,按字典序返回范围 [1, n] 内所有整数。 你必须设计一个时间复杂度为 O(n) 且使用 O(1) 额外空间的算法。…...
多模态大语言模型arxiv论文略读(112)
Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models ➡️ 论文标题:Assessing Modality Bias in Video Question Answering Benchmarks with Multimodal Large Language Models ➡️ 论文作者:Jea…...
DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model
一、研究背景与创新点 (一)现有方法的局限性 当前智驾系统面临两大核心挑战:一是长尾问题,即系统在遇到新场景时可能失效,例如突发交通状况或非常规道路环境;二是可解释性问题,传统方法无法解释智驾系统的决策过程,用户难以理解车辆行为的依据。传统语言模型(如 BERT…...
