Java关键字(1)
Java中的关键字是指被编程语言保留用于特定用途的单词。这些关键字不能用作变量名或标识符。以下是Java中的一些关键字:
public:表示公共的,可以被任何类访问。
private:表示私有的,只能被定义该关键字的类访问。
class:用于定义一个类。
static:表示静态的,可以用于定义静态变量或静态方法。
final:表示不可改变的,可以用于定义常量或不可继承的类。
void:表示无返回值的方法。
if/else:用于条件判断。
for/while:用于循环。
try/catch/finally:用于异常处理。
return:用于从方法中返回值。
这些关键字在Java中具有特定的语法和用法,对于编写Java程序非常重要。要注意避免将关键字用作变量名或标识符,以免引起编译错误。
public关键字
在Java中,public是一个访问修饰符,它可以用于类、方法和变量。当一个类、方法或变量被声明为public时,它们可以被任何其他类访问。
当一个类被声明为public时,这个类可以被其他类访问,即使这些类不在同一个包中。
// MyClass.java
public class MyClass {public void myMethod() {System.out.println("This is a public method");}
}
// AnotherClass.java
public class AnotherClass {public static void main(String[] args) {MyClass obj = new MyClass();obj.myMethod(); // 可以访问MyClass中的public方法}
}
当一个方法被声明为public时,这个方法可以被其他类调用。
// MyClass.java
public class MyClass {public void myMethod() {System.out.println("This is a public method");}
}
// AnotherClass.java
public class AnotherClass {public static void main(String[] args) {MyClass obj = new MyClass();obj.myMethod(); // 可以调用MyClass中的public方法}
}
当一个变量被声明为public时,这个变量可以被其他类访问。
// MyClass.java
public class MyClass {public String myVar = "This is a public variable";
}
// AnotherClass.java
public class AnotherClass {public static void
private:表示私有的,只能被定义该关键字的类访问。
在Java中,private关键字用于限制类中的成员变量和方法的访问范围。当一个成员变量或方法被声明为private时,它只能在声明它的类内部访问,其他类无法直接访问这些private成员。
使用private关键字的主要目的是封装类的内部实现细节,以防止外部类直接访问和修改类的内部状态。这样可以确保类的内部数据不会被意外地修改,从而提高了程序的安全性和稳定性。
而且,private关键字也有助于实现类的信息隐藏,使得类的用户只能通过公开的接口来访问类的功能,而不需要了解类的具体实现细节。
总之,private关键字在Java中扮演了重要的角色,它是实现封装和信息隐藏的重要手段,有助于提高程序的安全性和可维护性。
class:用于定义一个类。
static:表示静态的,可以用于定义静态变量或静态方法。
final:表示不可改变的,可以用于定义常量或不可继承的类。
void:表示无返回值的方法。
if/else:用于条件判断。
for/while:用于循环。
try/catch/finally:用于异常处理。
return:用于从方法中返回值。
相关文章:

Java关键字(1)
Java中的关键字是指被编程语言保留用于特定用途的单词。这些关键字不能用作变量名或标识符。以下是Java中的一些关键字: public:表示公共的,可以被任何类访问。 private:表示私有的,只能被定义该关键字的类访问。 cl…...

【机器学习合集】深度生成模型 ->(个人学习记录笔记)
深度生成模型 深度生成模型基础 1. 监督学习与无监督学习 1.1 监督学习 定义 在真值标签Y的指导下,学习一个映射函数F,使得F(X)Y 判别模型 Discriminative Model,即判别式模型,又称为条件模型,或条件概率模型 生…...
Java将PDF转换为文本
在Java中,你可以使用现有的库来将PDF文件转换为文本。下面是一个简单的示例,使用Apache PDFBox库来实现PDF到文本的转换。首先,确保在你的项目中添加了Apache PDFBox库的依赖。你可以在 Maven 项目中添加以下依赖: <!--Pdf--&g…...

Linux 运维工具之1Panel
一、1Panel 简介 1Panel 是一个现代化、开源的 Linux 服务器运维管理面板。 特点: 快速建站:深度集成 Wordpress 和 Halo,域名绑定、SSL 证书配置等一键搞定;高效管理:通过 Web 端轻松管理 Linux 服务器࿰…...

深入了解小红书笔记详情API:为内容创新提供动力
一、小红书笔记详情API简介 小红书笔记详情API是一种允许开发者访问小红书平台上的笔记详细数据的接口。通过这个API,我们可以获取笔记的标题、内容、标签、点赞数、评论数等详细信息。这些数据对于内容创作者和品牌来说至关重要,可以帮助他们了解用户喜…...

Animate 2024(Adobe an2024)
Animate 2024是一款由Adobe公司开发的动画和互动内容创作工具,是Flash的演进版本。Animate 2024为设计师和开发者提供了更丰富的功能,让他们能够创建各种类型的动画、交互式内容和多媒体应用程序。 Animate 2024具有以下特点: 强大的设计工…...

尽量避免删改List
作者简介:大家好,我是smart哥,前中兴通讯、美团架构师,现某互联网公司CTO 联系qq:184480602,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬 学习必须往深处挖&…...

【Linux操作系统】探秘Linux奥秘:用户、组、密码及权限管理的解密与实战
🌈个人主页:Sarapines Programmer🔥 系列专栏:《操作系统实验室》🔖诗赋清音:柳垂轻絮拂人衣,心随风舞梦飞。 山川湖海皆可涉,勇者征途逐星辉。 目录 🪐1 初识Linux OS &…...

计算机组成原理复习4
习题 练习题 下列不属于系统总线的为() a.数据总线 b.地址总线 c.控制总线 d.片内总线 D 系统总线中地址总线的功能是() a.选择主存单元地址 b.选择进行信息传输的设备 c.选择外存地址 d.指定主存和I/O设备接口电路的地址 D 解…...
AutoSAR(基础入门篇)3.3-Autosar中RTE的数据一致性与Interface接口
目录 一、RTE的数据一致性 1、什么是数据一致性 2、数据一致性的实现机制 2.1、利用RTE管理<...

超维空间S2无人机使用说明书——52、初级版——使用PID算法进行基于yolo的目标跟踪
引言:在实际工程项目中,为了提高系统的响应速度和稳定性,往往需要采用一定的控制算法进行目标跟踪。这里抛砖引玉,仅采用简单的PID算法进行目标的跟随控制,目标的识别依然采用yolo。对系统要求更高的,可以对…...
<JavaEE> TCP 的通信机制(一) -- 确认应答 和 超时重传
目录 TCP的通信机制的核心特性 一、确认应答 1)什么是确认应答? 2)如何“确认”? 3)如何“应答”? 二、超时重传 1)丢包的概念 2)什么是超时重传? 3)…...

Spark任务调度与数据本地性
Apache Spark是一个分布式计算框架,用于处理大规模数据。了解Spark任务调度与数据本地性是构建高效分布式应用程序的关键。本文将深入探讨Spark任务调度的流程、数据本地性的重要性,并提供丰富的示例代码来帮助大家更好地理解这些概念。 Spark任务调度的…...
【论文阅读】Self-Paced Curriculum Learning
论文下载 代码 Supplementary Materials bib: INPROCEEDINGS{,title {Self-Paced Curriculum Learning},author {Lu Jiang and Deyu Meng and Qian Zhao and Shiguang Shan and Alexander Hauptmann},booktitle {AAAI},year {2015},pages {2694--2700} }1. 摘…...
C++简易线程池
原理说明: 1. 线程池创建时,指定线程池的大小thread_size。当有新的函数任务通过函数addFunction ()添加进来后,其中一个线程执行函数。一个线程一次执行一个函数。如果函数数量大与线程池数量,则后来的函数等待。 2. 线程池内部…...

【MATLAB】PSO粒子群优化LSTM(PSO_LSTM)的时间序列预测
有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~ 1 基本定义 PSO粒子群优化LSTM(PSO-LSTM)是一种将粒子群优化算法(PSO)与长短期记忆神经网络(LSTM)相结合的混合模型。该算法通过…...

产品经理学习-怎么写PRD文档
目录 瀑布流方法论介绍 产品需求文档(PRD)介绍 产品需求文档的基本要素 撰写产品需求文档 优先产品需求文档的特点 其他相关文档 瀑布流方法论介绍 瀑布流模型是一种项目的开发和管理的方法论,是敏捷的开发管理方式相对应的另一种方法…...

第3课 获取并播放音频流
本课对应源文件下载链接: https://download.csdn.net/download/XiBuQiuChong/88680079 FFmpeg作为一套庞大的音视频处理开源工具,其源码有太多值得研究的地方。但对于大多数初学者而言,如何快速利用相关的API写出自己想要的东西才是迫切需要…...

Spark编程实验四:Spark Streaming编程
目录 一、目的与要求 二、实验内容 三、实验步骤 1、利用Spark Streaming对三种类型的基本数据源的数据进行处理 2、利用Spark Streaming对Kafka高级数据源的数据进行处理 3、完成DStream的两种有状态转换操作 4、把DStream的数据输出保存到文本文件或MySQL数据库中 四…...
Flink去重计数统计用户数
1.数据 订单表,分别是店铺id、用户id和支付金额 "店铺id,用户id,支付金额", "shop-1,user-1,1", "shop-1,user-2,1", "shop-1,user-2,1", "shop-1,user-3,1", "shop-1,user-3,1", "shop-1,user…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)
漏洞概览 漏洞名称:Apache Flink REST API 任意文件读取漏洞CVE编号:CVE-2020-17519CVSS评分:7.5影响版本:Apache Flink 1.11.0、1.11.1、1.11.2修复版本:≥ 1.11.3 或 ≥ 1.12.0漏洞类型:路径遍历&#x…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...