从有向带权图判断最短路径里各目标顶点顺序
对如下有向带权图,若采用迪杰斯特拉(Dijkstra)算法求从源点a到其他各顶点的最短路径,则得到的第一路径的目标顶点是b,第二条最短路径的目标顶点是c,后续得到的其余各最短路径的目标顶点依次是()
A.d,e,f
B.e,d,f
C.f,d,e
D.f,e,d

首先,先看除了a还有5个顶点,那么就是要走5趟。
在下面表格列出b、c、d、e、f 以及一两三四五趟,最后一行写集合。
| 顶点 | 一趟 | 两趟 | 三趟 | 四趟 | 五趟 |
| b | |||||
| c | |||||
| d | |||||
| e | |||||
| f | |||||
| 集合 |

- 在一开始我自己定义:
- 顶点a至b算一趟,顶点a至c也算一趟
- 以此类推,例如后面讲述的顶点a至b至c算两趟
- 然后再看,从a出发,首先接触的是b、c,那么分别写下到b和c的距离。
- 其他顶点对a来说一趟接触不到,那么我们就写无穷,即∞。
- 其中,(a,b)最短,距离为2,那么得出结论:集合就是{a,b}
- 由于顶点c这次没被引用,于是将(a,c)5先搁置至二趟(但每一次搁置到后面一趟需检验a至c是不是最短的,还有没有从a至c更加短的距离,详情看后面几轮)
| 顶点 | 一趟 | 两趟 | 三趟 | 四趟 | 五趟 |
| b | (a,b)2 | ||||
| c | (a,c)5 | (a,c)5 | |||
| d | ∞ | ||||
| e | ∞ | ||||
| f | ∞ | ||||
| 集合 | {a,b} |

- 然后再看,从a至b出发,能走两趟的就只有(a,b,c)和(a,b,d),此时(a,b,c)距离为3,(a,b,d)距离为5。
- 上一趟的(a,c)搁置到二趟需检验a至c是不是最短的,还有没有从a至c更加短的路线,哦有,就是我们刚才写的(a,b,c),(a,c)距离为5,(a,b,c)距离才3,那么就用(a,b,c)代替(a,c)。
- 此时(a,b,c)距离为3,(a,b,d)距离为5
- 那么最短的就是(a,b,c)
- 那么集合就是{a,b,c}
| 顶点 | 一趟 | 两趟 | 三趟 | 四趟 | 五趟 |
| b | (a,b)2 | ||||
| c | (a,c)5 | (a,c)5/(a,b,c)3 | |||
| d | ∞ | (a,b,d)5 | |||
| e | ∞ | ∞ | |||
| f | ∞ | ∞ | |||
| 集合 | {a,b} | {a,b,c} |

- 然后再看,此时b和c都被引用了,就剩d、e、f,即从a至b至c出发,能走三趟的,能接触到的就是d、e、f
- 此时三趟为(a,b,c,d)距离为6,(a,b,c,e)距离为7,(a,b,c,f)距离为4。
- (a,b,d)因为上一趟距离长没有选上,虽不是最短,但可以先搁置到这一趟继续写,但搁置到这一趟需检验a至d是不是最短的,还有没有从a至d更加短的路线,哦没有,还是(a,b,d),(a,b,c,d)距离为6,(a,b,d)距离才5,那么就保留(a,b,d)。
- 此时三趟为(a,b,d)距离为5,(a,b,c,e)距离为7,(a,b,c,f)距离为4,(a,b,c,f)最短,选(a,b,c,f)。
- 故集合为{a,b,c,f}
| 顶点 | 一趟 | 两趟 | 三趟 | 四趟 | 五趟 |
| b | (a,b)2 | ||||
| c | (a,c)5 | (a,c)5/(a,b,c)3 | |||
| d | ∞ | (a,b,d)5 | (a,b,d)5/(a,b,c,d)6 | ||
| e | ∞ | ∞ | (a,b,c,e)7 | ||
| f | ∞ | ∞ | (a,b,c,f)4 | ||
| 集合 | {a,b} | {a,b,c} | {a,b,c,f} |

- 然后再看,从a至b至c至f出发,能走四趟的,能接触到的就是d、e
- (a,b,d)是从二趟开始搁置到这一趟,因为已经检验过了所以不用检验,而(a,b,c,e)是从三趟才开始搁置的,还没检验过,检验一下,(a,b,c,e)距离为7,(a,b,d,e)距离为6,(a,c,e)距离为9,(a,b,c,d,e)距离为7,故(a,b,d,e)最短,用(a,b,d,e)替代这几个
- 然而虽然(a,b,d,e)距离为6,(a,b,d)5距离为5而已,故还是选(a,b,d)。
- 故集合为{a,b,c,f,d}
| 顶点 | 一趟 | 两趟 | 三趟 | 四趟 | 五趟 |
| b | (a,b)2 | ||||
| c | (a,c)5 | (a,c)5/(a,b,c)3 | |||
| d | ∞ | (a,b,d)5 | (a,b,d)5/(a,b,c,d)6 | (a,b,d)5 | |
| e | ∞ | ∞ | (a,b,c,e)7 | (a,b,c,e)7/(a,b,d,e)6/(a,c,e)9/(a,b,c,d,e)7 | |
| f | ∞ | ∞ | (a,b,c,f)4 | ||
| 集合 | {a,b} | {a,b,c} | {a,b,c,f} | {a,b,c,f,d} |

- 然后再看,此时就剩e,即从a至b至c至f至d出发,能走五趟的,能接触到的就只有e了
- (a,b,d,e)是从四趟开始搁置到这一趟,因为已经检验过了所以不用检验。
- 故集合为{a,b,c,f,d,e}
| 顶点 | 一趟 | 两趟 | 三趟 | 四趟 | 五趟 |
| b | (a,b)2 | ||||
| c | (a,c)5 | (a,c)5/(a,b,c)3 | |||
| d | ∞ | (a,b,d)5 | (a,b,d)5/(a,b,c,d)6 | (a,b,d)5 | |
| e | ∞ | ∞ | (a,b,c,e)7 | (a,b,c,e)7/(a,b,d,e)6/(a,c,e)9/(a,b,c,d,e)7 | (a,b,d,e)6 |
| f | ∞ | ∞ | (a,b,c,f)4 | ||
| 集合 | {a,b} | {a,b,c} | {a,b,c,f} | {a,b,c,f,d} | {a,b,c,f,d,e} |
故后续得到的其余各最短路径的目标顶点依次是{a,b,c,f,d,e}
相关文章:
从有向带权图判断最短路径里各目标顶点顺序
对如下有向带权图,若采用迪杰斯特拉(Dijkstra)算法求从源点a到其他各顶点的最短路径,则得到的第一路径的目标顶点是b,第二条最短路径的目标顶点是c,后续得到的其余各最短路径的目标顶点依次是() A.d,e,f B.e,d,f C.f,d,e D.f,…...
鼠标驱动框架:模拟键盘按键
/* 参考: drivers\hid\usbhid\usbmouse.c */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/init.h> #include <linux/usb.h> #include <linux/input.h> #include <linux/hid.h>st…...
ES6之Promise的链式调用
✨ 专栏介绍 在现代Web开发中,JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性,还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言,JavaScript具有广泛的应用场景&#x…...
HTML----JavaScript操作对象BOM对象
文章目录 目录 文章目录 本章要求 一.BOM模型概述 二.BOM核心:window对象 常用属性 常用方法: confirm() 案例 open ()close()案例 setTimeout( ) 案例 setInterval( ) 案例 document对象 练习 本章要求 了解BOM模型掌握BOM模型实际应用 一.BOM模型…...
隆道数智大会回顾|第13期《如何构建绿色产业供应链新生态》(完)
本期演讲嘉宾: 史文月 采购与供应链专家 邢庆峰 品类管理和质量管理专家 刘婷婷 中兴通讯供应链规划总监 张燕华 正大生物CIO 吴树贵 隆道公司总裁 本期演讲主题: 如何构建绿色产业供应链新生态 本期内容要点: 1.供应链管理的核心问…...
粒子群优化pso结合bp神经网络优化对csv文件预测matlab(3)
1.csv数据为密西西比数据集,获取数据集可以管我要,数据集内容形式如下图: 2.代码 这里参考的是b站的一位博主。 数据集导入教程在我的另一篇文章bp写过,需要的话可以去看一下 psobp.m close all clc%读取数据 inputX; outputY;…...
软性演员-评论家算法 SAC
软性演员-评论家算法 SAC 软性演员-评论家算法 SAC优势原理软性选择模型结构目标函数重参数化熵正则化代码实现 软性演员-评论家算法 SAC 优势原理 DDPG 的问题在于,训练不稳定、收敛差、依赖超参数、不适应复杂环境。 软性演员-评论家算法 SAC,更稳定…...
Nginx多域名部署多站点
目录 1.修改配置文件nginx.conf 2. 修改hosts文件 1.修改配置文件nginx.conf 在配置文件的 server_name 处修改成自己需要的域名,然后保存退出 j 查看语法是否错误,然后重启nginx nginx -t # 查看语法是否正确 systemctl restart nginx # 重启nginx …...
Java的常规面试题
Java的面试题主要涉及Java基础知识、并发编程、集合原理、JVM原理、I/O与网络编程、设计模式、互联网常用框架等多个领域[6]。一些常见的面试问题包括: 1. 面向对象的特征:继承、封装和多态性。 2. 访问修饰符public、private、protected以及默认时的区别…...
大数据技术发展史
文章目录 Google论文HadoopHive大数据生态 Google论文 今天我们常说的大数据技术,其实起源于Google在2004年前后发表的三篇论文,也就是我们经常听到的“三驾马车”,分别是分布式文件系统GFS、大数据分布式计算框架MapReduce和NoSQL数据库系统…...
linux常见基础指令
入门常见基础指令 ls、stat、 pwd 、cd、tree、 whoami、 touch、 mkdir、 rm 、 man、 cp、mv、cat、tac、echo、>、 >>、 < 、more、 less、 head、 tail、date、 cal、 find、 which、alias、whereis、grep、zip与unzip、 tar、bc、uname、xargs... 热键Tab、…...
“人家赚那么多”系列01:如何练习?练什么?
01 如何练习?练习什么? 今年计划重点围绕「在不骗自己的前提下,如何才能把事儿彻底做好,并做得有声有色?」为主题来写点儿东西,聊聊我是怎么做的,如何通过一些有效的方法来不断优化自己的。 想把…...
【Android】使用android studio查看内置数据库信息
要使用Android Studio查看内置数据库信息,可以按照以下步骤进行操作: 打开Android Studio并打开你的项目。 在左侧的Project窗口中,找到并展开你的app模块。 找到并展开"app" > "src" > "main"文件夹。…...
PHP开发日志 ━━ 基于PHP和JS的AES相互加密解密方法详解(CryptoJS) 适合CryptoJS4.0和PHP8.0
最近客户在做安全等保,需要后台登录密码采用加密方式,原来用个base64变形一下就算了,现在不行,一定要加密加key加盐~~ 前端使用Cypto-JS加密,传输给后端使用PHP解密,当然,前端虽然有key有盐&…...
2021-01-03 excel实现列递增,行保持不变
需求:excel文档数据操作的时候发现自动递增只能实现列不变行号递增 我这里里需要的是列递增行不变 解决方式:通过一些函数的组合使用 INDIRECT("驻场明细!"&CHAR(ROW()62)&ROW(驻场明细!A$28)) INDIRECT()函数的使用: INDI…...
[Python]两个杯子取水问题
利用两个杯子巧取三升水: 今天的这个趣味数学小游戏是利用两个没有刻度的水杯,巧妙地取出三升水来。 题目的条件是:一个总容量为6升的杯子和一个总容量为5升的杯子,同时面前有无限容量的水供你使用。不借助其它任何的容器…...
C++汇编语言学习计划
前几天买了某游戏的外挂,感觉外挂在我计算机上进行了不少操作,我想一探究竟,可是只有exe,没办法,翻译成汇编我也看不懂,索性来简单学习下。访问Chatgpt4,给了如下学习计划。 要从零开始学习C生成…...
微信服务号升级订阅号条件
服务号和订阅号有什么区别?服务号转为订阅号有哪些作用?首先我们要看一下服务号和订阅号的主要区别。1、服务号推送的消息没有折叠,消息出现在聊天列表中,会像收到消息一样有提醒。而订阅号推送的消息是折叠的,“订阅号…...
SpringBoot整合mybatis多数据源
废话不多说先上结果 对应数据库 首先导入所需的mybatis、mysql和lombok依赖 <dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>2.2.2</version></dependen…...
垃圾收集器与内存分配策略
内存分配和回收原则 对象优先在Eden区分配 大对象直接进入老年代 长期存活的对象进入老年代 什么是内存泄漏 不再使用的对象在系统中未被回收,内存泄漏的积累可能会导致内存溢出 自动垃圾回收与手动垃圾回收 自动垃圾回收:由虚拟机来自动回收对象…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
