当前位置: 首页 > news >正文

C++ 深度优先搜索DFS || 模版题:排列数字

给定一个整数 n
,将数字 1∼n
排成一排,将会有很多种排列方法。

现在,请你按照字典序将所有的排列方法输出。

输入格式
共一行,包含一个整数 n

输出格式
按字典序输出所有排列方案,每个方案占一行。

数据范围
1≤n≤7
输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

#include <iostream>using namespace std;const int N = 10;
int n;
int path[N];
bool st[N];void dfs(int u)
{if(u == n){for(int i = 0; i < n; i ++ )printf("%d ",path[i]);printf("\n");}for(int i = 1; i <= n; i ++ )if(!st[i]){path[u] = i;st[i] = true;dfs(u + 1);st[i] = false;}
}int main ()
{scanf("%d", &n);dfs(0);return 0;
}

在这里插入图片描述
u = 0 第一层
u = n 最后一层

相关文章:

C++ 深度优先搜索DFS || 模版题:排列数字

给定一个整数 n &#xff0c;将数字 1∼n 排成一排&#xff0c;将会有很多种排列方法。 现在&#xff0c;请你按照字典序将所有的排列方法输出。 输入格式 共一行&#xff0c;包含一个整数 n 。 输出格式 按字典序输出所有排列方案&#xff0c;每个方案占一行。 数据范围 1…...

计算机找不到msvcp120.dll如何解决?总结五个可靠的教程

在计算机使用过程中&#xff0c;遇到“找不到msvcp120.dll”这一问题常常令人困扰。msvcp120.dll作为Windows系统中至关重要的动态链接库文件&#xff0c;对于许多应用程序的正常运行起着不可或缺的作用。那么&#xff0c;究竟是什么原因导致找不到msvcp120.dll呢&#xff1f;又…...

法线变换矩阵的推导

背景 在冯氏光照模型中&#xff0c;其中的漫反射项需要我们对法向量和光线做点乘计算。 从顶点着色器中读入的法向量数据处于模型空间&#xff0c;我们需要将法向量转换到世界空间&#xff0c;然后在世界空间中让法向量和光线做运算。这里便有一个问题&#xff0c;如何将法线…...

React.Children.map 和 js 的 map 有什么区别?

JavaScript 中的 map 不会对为 null 或者 undefined 的数据进行处理&#xff0c;而 React.Children.map 中的 map 可以处理 React.Children 为 null 或者 undefined 的情况。 React 空节点&#xff1a;可以由null、undefined、false、true创建 import React from reactexport …...

13.Kubernetes部署Go应用完整流程:从Dockerfile到Ingress发布完整流程

本文以一个简单的Go应用Demo来演示Kubernetes应用部署的完整流程 1、Dockerfile多阶段构建 Dockerfile多阶段构建 [root@docker github]# git clone https://gitee.com/yxydde/http-dump.git [root@docker github]# cd http-dump/ [root@docker http-dump]# cat Dockerfile …...

叉车车载终端定制_基于MT6762安卓核心板的车载终端设备方案

叉车车载终端是一款专为叉车车载场景设计的4英寸Android车载平板电脑。它采用了高能低耗的8核ARM架构处理器和交互开放的Android 12操作系统&#xff0c;算力表现强大。此外&#xff0c;该产品还具备丰富的Wi-Fi-5、4G LTE和蓝牙等通讯功能&#xff0c;可选配外部车载蘑菇天线&…...

【CSS】保持元素宽高比

保持元素的宽高比&#xff0c;在视频或图片展示类页面是一个重要功能。 本文介绍其常规的实现方法。 实现效果 当浏览器视口发生变化时&#xff0c;元素的尺寸随之变化&#xff0c;且宽高比不变。 代码实现 我们用最简单的元素结构来演示&#xff0c;实现宽高比为4&#xf…...

使用 Docker 和 Diffusers 快速上手 Stable Video Diffusion 图生视频大模型

本篇文章聊聊&#xff0c;如何快速上手 Stable Video Diffusion (SVD) 图生视频大模型。 写在前面 月底计划在机器之心的“AI技术论坛”做关于使用开源模型 “Stable Diffusion 模型” 做有趣视频的实战分享。 因为会议分享时间有限&#xff0c;和之前一样&#xff0c;比较简…...

C++ namespace高级用法

高级用法 C++中的命名空间(namespace)是一种用于组织代码的机制,它可以帮助避免命名冲突,并使代码更加清晰和易于维护。以下是C++命名空间的一些高级用法: 嵌套命名空间:命名空间可以嵌套在其他命名空间中,形成一个层次结构。嵌套命名空间可以进一步细化命名空间,使其更…...

如何允许远程访问 MySQL

前些天发现了一个人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;最重要的屌图甚多&#xff0c;忍不住分享一下给大家。点击跳转到网站。 如何允许远程访问 MySQL 现在许多网站和应用程序一开始的 Web 服务器和数据库后端都托管在同一台计算机上。随着…...

PostgreSQL认证考试PGCA、PGCE、PGCM

PostgreSQL认证考试PGCA、PGCE、PGCM 【重点&#xff01;重点&#xff01;重点&#xff01;】PGCA、PGCE、PGCM 直通车快速下正&#xff0c;省心省力&#xff0c;每2个月一次考试 PGCE考试通知 &#xff08;2024&#xff09; 一、考试概览 &#xff08;一&#xff09; 报名要…...

Matlab深度学习进行波形分割(二)

&#x1f517; 运行环境&#xff1a;Matlab &#x1f6a9; 撰写作者&#xff1a;左手の明天 &#x1f947; 精选专栏&#xff1a;《python》 &#x1f525; 推荐专栏&#xff1a;《算法研究》 &#x1f510;#### 防伪水印——左手の明天 ####&#x1f510; &#x1f497; 大家…...

Markdown高级用法——mermaid

Markdown高级用法——mermaid 起初是写文章&#xff0c;其中有时序图流程图等一般是processOn或者draw.io画截图粘过去的&#xff0c;工作中又是腾讯文档&#xff0c;上面也能画图&#xff0c;但假如我笔记软件用语雀之类的又要把一张图反复粘贴&#xff0c;浪费内存&#xff…...

cf919Div2C题题目总结

Problem - C - Codeforces 这道题其实是一道数学题。 先看第一个变量&#xff0c;也就是我们要求的答案k的数量&#xff0c;但看k是很好确定它的限制条件的&#xff0c;要想均匀分成k份&#xff0c;n%k必须为0&#xff0c;有了k&#xff0c;我们再来看m&#xff0c;对于a(1)和…...

Pandas实战100例 | 案例 4: 数据选择和索引 - 选择特定的列和行

案例 4: 数据选择和索引 - 选择特定的列和行 知识点讲解 在 Pandas 中&#xff0c;选择数据是一个非常常见的操作。你可以选择特定的列或行&#xff0c;或者基于某些条件筛选数据。 示例代码 选择特定的列 # 选择单列 selected_column df[ColumnName]# 选择多列 selected…...

Netty-Netty实现自己的通信框架

通信框架功能设计 功能描述 通信框架承载了业务内部各模块之间的消息交互和服务调用&#xff0c;它的主要功能如下&#xff1a; 基于 Netty 的 NIO 通信框架&#xff0c;提供高性能的异步通信能力&#xff1b; 提供消息的编解码框架&#xff0c;可以实现 POJO 的序列化和反…...

【算法刷题】总结规律 算法题目第2讲 [234] 回文链表,因为深浅拷贝引出的bug

配合b站视频讲解食用更佳:https://www.bilibili.com/video/BV1vW4y1P7V7 核心提示&#xff1a;好几道题是处理有序数组的&#xff01; 适合人群&#xff1a;考研/复试/面试 解决痛点&#xff1a;1. 刷了就忘 2.换一道相似的题就不会 学完后会输出&#xff1a;对每类题目的框架…...

RabbitMQ如何保证消息不丢失?

RabbitMQ如何保证消息不丢失&#xff1f; 消息丢失的情况 生产者发送消息未到达交换机生产者发送消息未到达队列MQ宕机&#xff0c;消息丢失消费者服务宕机&#xff0c;消息丢失 生产者确认机制 解决的问题&#xff1a;publisher confirm机制来避免消息发送到MQ过程中消失。…...

Random的使用

作用&#xff1a;生成伪随机数 1.导包&#xff1a;import java.util.Random 2.得到随机数对象&#xff1a;Random r new Random(); 3.调用随机数的功能获取随机数&#xff1a; 这里随机生成一个0-9的整数&#xff1a; int number r.nextInt(10); 实现指定区间的随机数&a…...

通过反射修改MultipartFile类文件名

1、背景 项目上有这样一个需求&#xff0c;前端传文件过来&#xff0c;后端接收后按照特定格式对文件进行重命名。(修改文件名需求其实也可以在前端处理的) //接口类似于下面这个样子 PosMapping("/uploadFile") public R uploadFile(List<MultipartFile> fil…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)

错误一&#xff1a;yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因&#xff0c;后面把yaml.safe_dump直接替换成yaml.dump&#xff0c;确实能保存&#xff0c;但出现乱码&#xff1a; 放弃yaml.dump&#xff0c;又切…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...

2.2.2 ASPICE的需求分析

ASPICE的需求分析是汽车软件开发过程中至关重要的一环&#xff0c;它涉及到对需求进行详细分析、验证和确认&#xff0c;以确保软件产品能够满足客户和用户的需求。在ASPICE中&#xff0c;需求分析的关键步骤包括&#xff1a; 需求细化&#xff1a;将从需求收集阶段获得的高层需…...