当前位置: 首页 > news >正文

【华为OD机试2023】静态扫描 C++ Java Python

【华为OD机试2023】静态扫描 C++ Java Python

前言

如果您在准备华为的面试,期间有想了解的可以私信我,我会尽可能帮您解答,也可以给您一些建议!

本文解法非最优解(即非性能最优),不能保证通过率。

Tips1:机试为ACM 模式

你的代码需要处理输入输出,input/cin接收输入、print/cout 格式化输出

Tips2:机试按通过率算分

复杂题目可以考虑暴力破解,再逐步优化,不是运行超时就无法得分,比如一个分数为200的题目,当前通过率为50%,那么最终分数就是200*50%=100分

题目

题目描述

静态扫描可以快速识别源代码的缺陷,静态扫描的结果以扫描报告作为输出:
1、文件扫描的成本和文件大小相关,如果文件大小为N,则扫描成本为N个金币

2、扫描报告的缓存成本和文件大小无关,每缓存一个报告需要M个金币

3、扫描报告缓存后,后继再碰到该文件则不需要扫描成本,直接获取缓存结果

给出源代码文件标识序列和文件大小序列,求解采用合理的缓存策略,最少需要的金币数。

输入描述

第一行为缓存一个报告金币数M,L<=M<=100

第二行为文件标识序列:F1,F2,F3…Fn。

第三行为文件大小序列:

相关文章:

【华为OD机试2023】静态扫描 C++ Java Python

【华为OD机试2023】静态扫描 C++ Java Python 前言 如果您在准备华为的面试,期间有想了解的可以私信我,我会尽可能帮您解答,也可以给您一些建议! 本文解法非最优解(即非性能最优),不能保证通过率。 Tips1:机试为ACM 模式 你的代码需要处理输入输出,input/cin接收输入、…...

函数栈帧的创建和销毁(详解)

函数栈帧的创建和销毁&#x1f996;函数栈帧是什么&#xff1f;&#x1f996;函数栈帧的创建和销毁解析&#x1f40b;栈是什么&#xff1f;&#x1f40b;认识相关寄存器和汇编指令&#x1f40b;解析函数栈帧的创建和销毁&#x1f433;预备知识&#x1f433;函数的调用堆栈&…...

【100个 Unity实用技能】 | 脚本无需挂载到游戏对象上也可执行的方法

Unity 小科普 老规矩&#xff0c;先介绍一下 Unity 的科普小知识&#xff1a; Unity是 实时3D互动内容创作和运营平台 。包括游戏开发、美术、建筑、汽车设计、影视在内的所有创作者&#xff0c;借助 Unity 将创意变成现实。Unity 平台提供一整套完善的软件解决方案&#xff…...

条件期望5

条件期望例题 随机图 从节点1开始, N为一个随机变量, 表示整个过程第一次出现"贪吃蛇"情形时, 所进行的步数.即Nk⇒Xk(1)∈{1,X(1),X2(1),...Xk−1(1)}其中1,X(1),X2(1),...Xk−1(1)各不相同N k \Rightarrow X^k(1) \in \{1,X(1), X^2(1),...X^{k-1}(1)\} \\ 其中1…...

RecyclerView ViewType二级

实现效果描述&#xff1a; 1、点击recyclerview中item&#xff0c;列表下方出现其他样式的item&#xff0c;作为子item&#xff0c;如下所示 所需要的java文件和xml文件有&#xff1a; 1、创建FoldAdapteradapter, 在FoldAdapter中&#xff0c;定义两种不同的类型&#xff…...

将对象或数组存在 dom元素的属性上,最后取不到完整数据,只取到 [{

目录 一、问题 二、问题及解决方法 三、总结 一、问题 1.我需要在dom元素里面添加了一个属性test存一个对象数组temp&#xff0c;以便我下一次找到这个dom元素时可以直接拿到属性里面的数据来渲染页面。 2.dom 属性上存 对象和数组&#xff0c;必须先JSON.stringify(arr),转…...

Flask源码篇:Flask路由规则与请求匹配过程(超详细,易懂)

目录1 启动时路由相关操作&#xff08;1&#xff09;分析app.route()&#xff08;2&#xff09;分析add_url_rule()&#xff08;3&#xff09;分析Rule类&#xff08;4&#xff09;分析Map类&#xff08;5&#xff09;分析MapAdapter类&#xff08;6&#xff09;分析 url_rule_…...

Jmeter接口测试教程之【参数化技巧总结】,总有一个是你不知道的

目录&#xff1a;导读 一、随机值 二、随机字符串 三、时间戳 四、唯一字符串UUID 说起接口测试&#xff0c;相信大家在工作中用的最多的还是Jmeter。 大家看这个目录就知道jmeter的应用有多广泛了&#xff1a;https://www.bilibili.com/video/BV1e44y1X78S/? JMeter是一个…...

缓存与数据库的双写一致性

背景 在高并发的业务场景下&#xff0c;系统的性能瓶颈往往是出现在数据库上&#xff0c;用户并发访问过大&#xff0c;压力都打到数据库上。所以一般都会用redis做缓存层&#xff0c;起到一个缓冲作用&#xff0c;让请求先访问到缓存层&#xff0c;而不是直接去访问数据库&am…...

力扣-213打家劫舍II(dp)

力扣-213打家劫舍II 1、题目 213. 打家劫舍 II 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋&#xff0c;每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 &#xff0c;这意味着第一个房屋和最后一个房屋是紧挨着的。同时&#xff0c;相邻的房屋装有相互连通…...

关于【网格结构】岛屿类问题的通用解法DFS(深度遍历)遍历框架+回溯+剪枝总结

最近在刷力扣时遇见的问题&#xff0c;自己总结加上看了力扣大佬的知识总结写下本篇文章&#xff0c;我们所熟悉的 DFS&#xff08;深度优先搜索&#xff09;问题通常是在树或者图结构上进行的。而我们今天要讨论的 DFS 问题&#xff0c;是在一种「网格」结构中进行的。岛屿问题…...

【LeetCode】982. 按位与为零的三元组

982. 按位与为零的三元组 题目描述 给你一个整数数组 nums &#xff0c;返回其中 按位与三元组 的数目。 按位与三元组 是由下标 (i, j, k) 组成的三元组&#xff0c;并满足下述全部条件&#xff1a; 0 < i < nums.length0 < j < nums.length0 < k < num…...

Linux内核源码进程原理分析

Linux内核源码进程原理分析一、Linux 内核架构图二、进程基础知识三、Linux 进程四要素四、task_struct 数据结构主要成员五、创建新进程分析六、剖析进程状态迁移七、写时复制技术一、Linux 内核架构图 二、进程基础知识 Linux 内核把进程称为任务(task)&#xff0c;进程的虚…...

电子技术——CMOS反相器

电子技术——CMOS反相器 在本节&#xff0c;我们深入学习CMOS反相器。 电路原理 下图是我们要研究的CMOS反相器的原理图&#xff1a; 下图展示了当输入 vIVDDv_I V_{DD}vI​VDD​ 时的 iD−vDSi_D-v_{DS}iD​−vDS​ 曲线&#xff1a; 我们把 QNQ_NQN​ 当做是驱动源&#x…...

gazebo仿真轨迹规划+跟踪(不在move_base框架下)

以Tianbot为例子&#xff0c;开源代码如下&#xff1a; https://github.com/tianbot/tianbot_mini GitHub - tianbot/abc_swarm: Ant Bee Cooperative Swarm, indicating air-ground cooperation. This repository is for Tianbot Mini and RoboMaster TT swarm kit. 1.在…...

C. Good Subarrays(前缀和)

C. Good Subarrays一、问题二、分析三、代码一、问题 二、分析 这道题目的意思就是给我们一个数组&#xff0c;然后我们从数组中选取一个连续的区间&#xff0c;这个区间满足条件&#xff1a;区间内的元素和等于区间的长度。 对于区间和问题我们先想到的是前缀和的算法。 那…...

关于Facebook Messenger CRM,这里有你想要知道的一切

关于Facebook Messenger CRM&#xff0c;这里有你想要知道的一切&#xff01;想把Facebook Messenger与你的CRM整合起来吗&#xff1f;这篇博文是为你准备的! 我们将介绍有关获得Facebook Messenger CRM整合的一切信息。然后&#xff0c;我们将解释为什么你需要像SaleSmartly&a…...

ChIP-seq 分析:数据与Peak 基因注释(10)

动动发财的小手&#xff0c;点个赞吧&#xff01; 1. 数据 今天&#xff0c;我们将继续回顾我们在上一次中研究的 Myc ChIPseq。这包括用于 MEL 和 Ch12 细胞系的 Myc ChIPseq。 可在此处[1]找到 MEL 细胞系中 Myc ChIPseq 的信息和文件可在此处[2]找到 Ch12 细胞系中 Myc ChIP…...

《C++ Primer Plus》第18章:探讨 C++ 新标准(8)

使用大括号括起的初始化列表语法重写下述代码。重写后的代码不应使用数组 ar&#xff1a; class Z200 { private:int j;char ch;double z; public:Z200(int jv, char chv, zv) : j(jv), ch(chv), z(zv) {} ... };double x 8.8; std::string s "What a bracing effect!&q…...

YOLO-V5 系列算法和代码解析(八)—— 模型移植

文章目录工程目标芯片参数查阅官方文档基本流程Python 版工具链安装RKNPU2的编译以及使用方法移植自己训练的模型工程目标 将自己训练的目标检测模型【YOLO-V5s】移植到瑞芯微【3566】芯片平台&#xff0c;使用NPU推理&#xff0c;最终得到正确的结果。整个过程涉及模型量化、…...

js实现复制拷贝的兼容方法

1. 定义复制拷贝的方法 在某个工具类方法中定义该方法&#xff0c;兼容不同浏览器处理 /*** description 拷贝的类方法*/ class CopyClass {// constructor() {}setRange(input) {return new Promise((resolve, reject) > {try {// 创建range对象const range document.c…...

学习 Python 之 Pygame 开发魂斗罗(八)

学习 Python 之 Pygame 开发魂斗罗&#xff08;八&#xff09;继续编写魂斗罗1. 创建敌人类2. 增加敌人移动和显示函数3. 敌人开火4. 修改主函数5. 产生敌人6. 使敌人移动继续编写魂斗罗 在上次的博客学习 Python 之 Pygame 开发魂斗罗&#xff08;七&#xff09;中&#xff0…...

Lesson11---分类问题

11.1 逻辑回归 11.1.1 广义线性回归 课程回顾 线性回归&#xff1a;将自变量和因变量之间的关系&#xff0c;用线性模型来表示&#xff1b;根据已知的样本数据&#xff0c;对未来的、或者未知的数据进行估计 11.1.2 逻辑回归 11.1.2.1 分类问题 分类问题&#xff1a;垃圾…...

Python基础学习12——异常

在Python中&#xff0c;会使用“异常”这个十分特殊的对象来管理程序执行期间发生的错误&#xff0c;即报错。本文将介绍一下python基础的处理异常的方法以及一些基本的异常类型。 异常处理方法 try-except代码块 当我们编写程序时&#xff0c;我们可以编写一个try-except代…...

[日常练习]练习17:链表头插法、尾插法练习

[日常练习]练习17&#xff1a;链表头插法、尾插法练习练习17描述输入输出输入示例1输出示例1输入示例2输出示例2代码演示&#xff1a;总结练习17 【日常练习】 链表头插法、尾插法练习 描述 输入3 4 5 6 7 9999一串整数&#xff0c;9999代表结束&#xff0c;通过头插法新建链…...

第十四届蓝桥杯模拟赛(第三期)试题与题解 C++

目录 一、填空题 &#xff08;一&#xff09;最小的十六进制(答案&#xff1a;2730) &#xff08;二&#xff09;Excel的列(答案&#xff1a;BYT) &#xff08;三&#xff09;相等日期(答案&#xff1a;70910) &#xff08;四&#xff09;多少种取法(答案&#xff1a;189)…...

关于 “宏“

起源 宏 Macro"这个词源于希腊语 “makros”&#xff0c;意为“大的&#xff0c;长的” 延伸使用 随后用于计算机领域是&#xff0c;在汇编语言时用于描述一大堆的汇编指令。 只要用宏指令&#xff0c;就是直接用的一大堆的汇编指令&#xff08;有点函数的味道&#xf…...

1.2 CSS标签选择器,类选择器

CSS选择器&#xff1a; 根据不同的需求选出不同的标签&#xff0c;进行美化装饰 1. 标签选择器 标签选择器(元素选择器)&#xff1a;用 HTML标签名作为选择器&#xff0c;按标签名称进行分类&#xff0c;为页面某一类标签指定统一的CSS样式 作用: 可以把某一类标签全部选中&…...

【Linux】进程等待 | 详解 wait/waitpid 的 status 参数

&#x1f923; 爆笑教程 &#x1f449; 《看表情包学Linux》&#x1f448; 猛戳订阅 &#x1f525; &#x1f4ad; 写在前面&#xff1a;在上一章中我们讲解了进程创建与进程终止&#xff0c;本章我们开始讲解进程等待。进程等待这部分知识相较于前面还是较为复杂的&#xff0…...

OpenAI眼中的无线调优策略

问&#xff1a;无线调优策略该怎么优化无线调优是指对无线网络的各种参数进行优化&#xff0c;以提高网络性能和用户体验。以下是几个无线调优策略&#xff1a;频谱分配&#xff1a;通过优化频谱的分配&#xff0c;可以提高网络的容量和覆盖范围。在频谱分配时&#xff0c;需要…...