最新ChatGPT/GPT4科研应用与AI绘图及论文高效写作
详情点击链接:最新ChatGPT/GPT4科研应用与AI绘图及论文高效写作
一OpenAI
1.最新大模型GPT-4 Turbo
2.最新发布的高级数据分析,AI画图,图像识别,文档API
3.GPT Store
4.从0到1创建自己的GPT应用
5. 模型Gemini以及大模型Claude2
二定制自己的GPTs
1.自定义GPTs使用
2.聊天交流的方式制作自己的GPTs
3.自定义的方式制作自己的GPTs
4.GPTs的3种分发方式
5.GPTs的action功能
6.论文改进专家(GTPs)
7.论文搜索(GTPs)
8.论文写作(GTPs)
三AIGC基础
1.深度学习常用架构
2.GPT1-4模型
3.AIGC技术
4.大语言模型的评估标准
5.LLM与搜索引擎:差异与联系
四提示词工程高级技巧
1.提示词工程
2.如何写好一篇论文的提示词
3.初识LLM:角色扮演的艺术
4.调整LLM的语调与表达方式
5.定义LLM的具体任务与目标
6.探索LLM与上下文的密切关系
7.零样本:强化逻辑推理
8.多样本:模型模仿能力提升
9.自洽性检验:数学能力加强
10.知识生成:提高模型的信息处理能力
五GPT/GPT4
1.GPT/GPT4是最好用的翻译软件
2.AI助力高效表格数据创建
3.AI在数据处理中的实际操作
4.苏格拉底式教学法在AI中的运用
5.如何与AI交流科研问题
6.AI助力文本数据整理与分析
7.AI在用户评论分析中的应用
8.AI撰写专业报告的技巧
9.让AI根据知识点出题
10.使用AI工具快速产出高端PPT的4种方法
11.使用AI工具快速产出短视频
12.快速制作流程图和思维导图

六GPT/GPT4成为你的论文助手
1.论文搜索和论文关联
2.分析论文得出审稿意见
3.进行论文内容问答
4.生成论文摘要
5.写论文综述并标注内容来源
6.中/英文论文润色的4种方法
7.进行论文降重的技巧
8.查找某个观点或内容相关的论文
9.对多篇论文进行分析对比
10.如何防止AI生成的内容被检测
11.生成完整长篇论文的技巧
12.让AI结合试验数据进行写作
七python基础
1.python的应用场景
2.python环境安装配置
3.print使用
4.运算符和变量
5.循环
6.列表元组字典
7.if条件
8.函数
9.模块
10.类的使用
11.文件读写
12.异常处理
八科学计算模块Numpy和绘图模块Matplotlib
1.numpy的属性
2.创建array
3.numpy的运算
4.随机数生成以及矩阵的运算
5.numpy的索引
6.array合并
7.Matplotlib基础用法
8.figure图像
9.设置坐标轴
10.legend图例
11.scatter散点图
九机器学习算法应用
1.机器学习
2.训练集/验证集/测试集
3.监督学习与无监督学习
4.分类/回归/聚类算法
5.机器学习算法应用分析
6.使用回归算法完成波士顿房价预测
7.使用KNN算法完成鸢尾花分类
8.使用多种算法完成糖尿病预测
9.分析特征重要性
10.机器学习特征工程完整流程
十深度学习算法基础
1.单层感知器
2.激活函数,损失函数和梯度下降法
3.BP算法
4.梯度消失问题
5.多种激活函数
6.BP算法解决手写数字识别问题
十一深度学习框架Tensorflow应用
1.Mnist数据集和softmax
2.使用BP神经网络识别图片
3.交叉熵(cross-entropy)
4.欠拟合/正确拟合/过拟合
5.各种优化器Optimizer
6.模型保存和模型载入方法
十二深度学习算法-卷积神经网络CNN应用
1.CNN卷积神经网络
2.卷积的局部感受野,权值共享。
3.卷积的具体计算方式
4.池化层介绍(均值池化、最大池化)
5.same padding和valid padding介绍
6.LeNET-5卷积网络
7.CNN手写数字识别
十三深度学习算法-长短时记忆网络LSTM应用
1.RNN循环神经网络
2.RNN具体计算分析
3.长短时记忆网络LSTM
4.输入门,遗忘门,输出门具体计算分析
5.堆叠LSTM
6.双向LSTM
7.使用LSTM进行设备故障预测
十四基于深度学习模型的图像识别
1.VGG16模型
2.ResNet模型
3.EfficientNet模型
4.下载训练好的1000分类图像识别模型
5.使用训练好的图像识别模型进行各种图像分类
6.使用迁移学习训练自己的天气现象分类模型
十五让ChatGPT/GPT4成为你的编程助手
1.使用ChatGPT/GPT4写程序的注意事项
2.AI对代码
3.进行代码纠错及自动修改
4.使用AI工具读取本地数据的技巧
5.绘制折线图,柱状图,饼图等各种统计分析图表
6.让AI工具帮你自动进行数据分析和特征工程
7.使用你的数据产生机器学习模型进行分类预测
8.根据你的数据产生深度学习模型进行回归预测
9.自动化AI编程助手的使用
十六让ChatGPT/GPT4进行数据处理
1.让AI正确读取表格数据
2.让AI理解百万行数据
3.使用AI进行数据可视化
4.使用AI进行数据缺失值处理
5.使用AI进行数据归一化
6.使用AI进行特征筛选
7.使用AI输出表格数据
8.使用AI输出特征工程处理后的数据
9.使用AI绘制统计分析图表
十七GPT/GPT4在地球科学方面的应用
1.用GPT绘制世界地图海岸线
2.用GPT绘制不同的地图投影
3.用GPT绘制南极地投影
4.用GPT绘制地球各种关键变量的图
5.用GPT绘制台风总降水量图
6.用GPT绘制台风风速图
7.用GPT计算台风总降水量
8.用GPT对遥感图像光谱数据进行机器学习建模分类
十八ChatGPT/GPT4高级开发应用
1.GPT模型API接口程序使用
2.GPT模型参数调节
3.用GPT程序API接口制作聊天机器人
4.用GPT程序API接口制作自动订餐机器人
5.用GPT程序API批量处理大量文本数据
6.用DALLE-3程序API接口生成图片
7.GPT4本地文件上传功能使用
8.GPT4联网功能使用
9.GPT4图像识别功能应用
10.GPT高级数据分析功能
十九AI绘图工具Midjourney和DALLE3应用
1. AI画图原理
2.Midjourney工具的基础操作
3.remix模式
4.blend命令
5.describe命令
6.图生图通过图片生成新的图片
7.Midjourney的参数和设置
8.Midjourney科研作图
9.DALL-E 3模型
10.DALL-E 3根据上下文内容修改图片
11.DALL-E 3在图像中生成特定文字
12.DALL-E 3绘图结果的不断优化
二十AI绘图工具Stable Diffusion基础应用
1.Stable Diffusion工具
2.Stable Diffusion环境部署
3.通过文字生成图片
4.通过图片生成图片
5.图像智能高清算法
6.使用Lora模型产生写实人物图像
7.进行图像的局部重绘
8.Controlnet插件
9.使用线稿图生成装修和建筑
10.使用线稿图给图片上色
11.产生特定姿态的人物图像
相关文章:
最新ChatGPT/GPT4科研应用与AI绘图及论文高效写作
详情点击链接:最新ChatGPT/GPT4科研应用与AI绘图及论文高效写作 一OpenAI 1.最新大模型GPT-4 Turbo 2.最新发布的高级数据分析,AI画图,图像识别,文档API 3.GPT Store 4.从0到1创建自己的GPT应用 5. 模型Gemini以及大模型Clau…...
【leetcode】移除元素
大家好,我是苏貝,本篇博客带大家刷题,如果你觉得我写的还不错的话,可以给我一个赞👍吗,感谢❤️ 目录 一.暴力求解法二.使用额外数组三.原地修改数组 点击查看题目 一.暴力求解法 若我们不考虑时间复杂度…...
Spring Boot整合Redis的高效数据缓存实践
引言 在现代Web应用开发中,数据缓存是提高系统性能和响应速度的关键。Redis作为一种高性能的缓存和数据存储解决方案,被广泛应用于各种场景。本文将研究如何使用Spring Boot整合Redis,通过这个强大的缓存工具提高应用的性能和可伸缩性。 整合…...
FastApi-参数接收的正确使用(2)
前言 本文是该专栏的第2篇,后面会持续分享FastApi以及项目实战的各种干货知识,值得关注。 本文重点介绍,在使用FastApi使用“参数接收”时遇到的三种类型“路径参数”,“查询参数”,“请求体”的相关问题以及相应的解决方案。 具体详细知识点,跟着笔者直接往下看正文。…...
三、需求规格说明书(软件工程示例)
1.引言 1.1编写目的 1.2项目背景 1.3定义 1.4参考资料 2.任务概述 2.1目标 2.2运行环境 2.3条件与限制 3.数据描述 3.1静态数据 3.2动态数据 3.3数据库介绍 3.4数据词典 3.5数据采集 4.功能需求 …...
Elasticsearch 查询语句概述
目录 1. Match Query 2. Term Query 3. Terms Query 4. Range Query 5. Bool Query 6. Wildcard Query 7. Fuzzy Query 8. Prefix Query 9. Aggregation Query Elasticsearch 是一个基于 Lucene 的搜索引擎,提供了丰富的查询DSL(Domain Specifi…...
kafka简单介绍和代码示例
“这是一篇理论文章,给大家讲一讲kafka” 简介 在大数据领域开发者常常会听到MQ这个术语,该术语便是消息队列的意思, Kafka是分布式的发布—订阅消息系统。它最初由LinkedIn(领英)公司发布,使用Scala语言编写,与2010年…...
一次解决ForkJoinPool日志追踪的辛酸经历
本文主要分享了一次解决ForkJoinPool日志追踪的辛酸经历。历时3个月终于找到通用的解决方案,以此文分享给有需要的你。 一、需求背景 1.某日,某同事根据日志ID排查生产环境问题过程中,发现日志不全 2.经排查发现中间有很多线程为ForkJoinP…...
VM使用教程--SDK取图 视频笔记
本笔记均由海康机器人官网的V学院视频中记录所得,属于省流大师了[doge] 图像采集 图像采集包括1图像源,2多图采集,3输出图像,4缓存图像,5光源 1图像源 图像源包括本地图像,相机采图,SDK 本…...
11.spring boot 启动源码(一)
目录 概述SpringApplication静态方法构造方法run 实例方法配置文件Actuator 工作原理*EndpointAutoConfigurationBeansEndpointAutoConfigurationShutdownEndpointAutoConfiguration结束概述 spring boot 版本 2.6.13 spring boot 启动源码(一) 涉及 SpringApplication 中静态…...
【微服务】springcloud集成sleuth与zipkin实现链路追踪
目录 一、前言 二、分布式链路调用问题 三、链路追踪中的几个概念 3.1 什么是链路追踪 3.2 常用的链路追踪技术 3.3 链路追踪的几个术语 3.3.1 span 编辑 3.3.2 trace 3.3.3 Annotation 四、sluth与zipkin概述 4.1 sluth介绍 4.1.1 sluth是什么 4.1.2 sluth核心…...
数学建模-预测人口数据
目录 中国09~18年人口数据 创建时间 绘制时间序列图 使用专家建模器 得到结果 预测结果 残差的白噪声检验 中国09~18年人口数据 创建时间 路径:数据-> 定义日期和时间 绘制时间序列图 使用专家建模器 看看spss最终判断是那个模型最佳的契合 得到结果 预…...
SpringBoot 集成 Canal 基于 MySQL 做数据同步
一、canal 组件关系 下载地址:https://github.com/alibaba/canal/releases/download/canal-1.1.7/ 这里面主要的有两个 canal.deployer-1.1.7.tar.gz 和 canal.adapter-1.1.7.tar.gz,canal.admin-1.1.7.tar.gz 是一个监控服务,可选…...
【CVE-2022-22733漏洞复现】
Apache ShardingSphere ElasticJob-UI漏洞 漏洞编号:CVE-2022-22733 文档说明 本文作者:SwBack 创作时间:2024/1/21 19:19:19 知乎:https://www.zhihu.com/people/back-88-87 CSDN:https://blog.csdn.net/qq_30817059 百度搜索: SwBack漏洞描述 Apache ShardingSphere Elast…...
Python爬虫---scrapy框架---当当网管道封装
项目结构: dang.py文件:自己创建,实现爬虫核心功能的文件 import scrapy from scrapy_dangdang_20240113.items import ScrapyDangdang20240113Itemclass DangSpider(scrapy.Spider):name "dang" # 名字# 如果是多页下载的话, …...
【机器学习】机器学习四大类第01课
一、机器学习四大类 有监督学习 (Supervised Learning) 有监督学习是通过已知的输入-输出对(即标记过的训练数据)来学习函数关系的过程。在训练阶段,模型会根据这些示例调整参数以尽可能准确地预测新的、未见过的数据点的输出。 实例&#x…...
下述默认构造函数有什么问题?
12.4 // points to string allocated by new // holds length of string 独立的、相同的数据,而不会重叠。由于同样的原因,必须定义赋值操作符。对于每一种情况,最终目的 都是执行深度复制,也就是说,复制实际的数据,而不仅仅是复制指向数据的指针。 对象的存储持续性为自动或…...
vite和mockjs配合使用
vite mockjs 当后端还没准备完成之前,前端可以使用 mock 模拟后端响应,提高开发效率 1、安装插件 使用 vite-plugin-mock 插件,配合mockjs完成项目的 mock 配置 npm install mockjs vite-plugin-mock2、vite配置插件 在 vite.config.js…...
【数据结构】常见八大排序算法总结
目录 前言 1.直接插入排序 2.希尔排序 3.选择排序 4.堆排序 5.冒泡排序 6.快速排序 6.1Hoare版本 6.2挖坑法 6.3前后指针法 6.4快速排序的递归实现 6.5快速排序的非递归实现 7.归并排序 8.计数排序(非比较排序) 9.补充:基数排序 10.总结…...
系统学英语 — 句法 — 常规句型
目录 文章目录 目录5 大基本句型复合句型主语从句宾语从句表语从句定语从句状语从句同位语从句补语从句 谓语句型 5 大基本句型 主谓:主语发出一个动作,例如:He cried.主谓宾:we study English.主系表:主语具有某些特…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
