【动态规划】【数学】【C++算法】805 数组的均值分割
作者推荐
【动态规划】【数学】【C++算法】18赛车
本文涉及知识点
动态规划 数学
805 数组的均值分割
给定你一个整数数组 nums
我们要将 nums 数组中的每个元素移动到 A 数组 或者 B 数组中,使得 A 数组和 B 数组不为空,并且 average(A) == average(B) 。
如果可以完成则返回true , 否则返回 false 。
注意:对于数组 arr , average(arr) 是 arr 的所有元素的和除以 arr 长度。
示例 1:
输入: nums = [1,2,3,4,5,6,7,8]
输出: true
解释: 我们可以将数组分割为 [1,4,5,8] 和 [2,3,6,7], 他们的平均值都是4.5。
示例 2:
输入: nums = [3,1]
输出: false
参数范围:
1 <= nums.length <= 30
0 <= nums[i] <= 104
动态规划
令n=nums.length half=n/2。不失一般性,令A的长度小于等于B,则lena的长度取值范围[1,half],lenb=n-lena。
数组A的和为:Sum i = 0 : n − 1 \Large_{i=0}^{:n-1} i=0:n−1nums[i]*lena/n ,数组A的和必须是整数。nums[i]的和最大为104*30 ,lean最大为15,可以直接相乘,看对n的余数是否为0。如果超出整数范围,可以先对lena和n约分。
预处理CountToTotal
将nums分成两部分。vLeft[i]记录所有从nums[0,half)选择i个数 可能的和。 vRight[i]记录所有从nums[half,n)中选择i个数的和。下面以vLeft为例,vRightei类似。三层循环
第一层循环:枚举[0,half)。时间复杂度O(n)
第二层循环:从大到小枚举vLeft[j]。 时间复杂度(n)。
第三层循环:枚举vLeft[j-1]。 时间复杂度O(2^n)
动态规划的转移方程:本轮的vLeft[j]一定是上一轮的vLeft[j-1]+nums[i]。总时间复杂度O(1515215) 约106
处理
第一层循环:用变量i枚举lena。
第二层循环:枚举A从左边选择了j个元素,j的取值范围[0,i]。
第三层循环:通过iLeft枚举vLeft[j],看vRight[i-j]是否存在totalA - iLeft。
时间复杂度: O(nn2n)
代码
核心代码
int GCD(int n1, int n2)
{int t1 = min(n1, n2);int t2 = max(n1, n2);if (0 == t1){return t2;}return GCD(t2 % t1, t1);
}class Solution {
public:bool splitArraySameAverage(vector<int>& nums) {const int n = nums.size();const int half = n / 2;vector<unordered_set<int>> vLeft(1), vRight(1); CountToTotal( vLeft, nums.data(),0, half);CountToTotal(vRight, nums.data()+half, 0, n-half);const int total = std::accumulate(nums.begin(), nums.end(),0);for (int i = 1; i <= half; i++){const int iGCD = GCD(i, n);if (0 != total % (n / iGCD)){continue;//A的和必定为整数}const int totalA = total * i / n;for (int j = 0; j <= i; j++){// A数组总共选择i个,其中从左边选择j个for (const auto& iLeft : vLeft[j]){if (vRight[i - j].count(totalA - iLeft)){return true;}}}}return false;}void CountToTotal(std::vector<std::unordered_set<int>>& v, const int* p,int left,int r){v[0].emplace(0);for (int i = left; i < r ; i++){v.emplace_back();for (int j = v.size() - 1; j >= 1; j--){for (const auto& pre : v[j - 1]){v[j].emplace(pre + p[i]);}}}}
};
测试用例
template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<int> nums;{Solution sln;nums = { 1,2,3,4,5,6,7,8 };auto res = sln.splitArraySameAverage(nums);Assert(true, res);}{Solution sln;nums = { 3,1};auto res = sln.splitArraySameAverage(nums);Assert(false, res);}{Solution sln;nums = { 18,10,5,3 };auto res = sln.splitArraySameAverage(nums);Assert(false, res);}}
2023年1月
class Solution {
public:
bool splitArraySameAverage(vector& nums) {
if (1 == nums.size())
{
return false;
}
const int iLeftMaxLen = nums.size() / 2;
const int iRightMaxLen = nums.size() - iLeftMaxLen;
vector<std::unordered_set> vLeftLenSums(iLeftMaxLen+1),vRightLenSums(iRightMaxLen+1);
vLeftLenSums[0].insert(0);
for (int i = 0; i < iLeftMaxLen; i++)
{
for (int j = i ; j >=0 ; j-- )
{
for (auto& it : vLeftLenSums[j])
{
vLeftLenSums[j + 1].insert(it +nums[i]);
}
}
vLeftLenSums[1].insert(nums[i]);
}
vRightLenSums[0].insert(0);
for (int i = iLeftMaxLen; i < nums.size(); i++)
{
for (int j = i - iLeftMaxLen; j >= 0; j–)
{
for (auto& it : vRightLenSums[j])
{
vRightLenSums[j + 1].insert(it + nums[i]);
}
}
}
int iTotalSum = std::accumulate(nums.begin(), nums.end(), 0);
for (int iALen = 1; iALen + 1 <= nums.size(); iALen++)
{
double dSum = iTotalSum 1.0 / nums.size() iALen;
int iSum = dSum;
bool bInt = ((dSum - iSum) < 0.0001) || ((dSum - iSum) > 0.9999);
if (!bInt)
{
continue;
}
for (int iLeftLen = max(0,iALen-iRightMaxLen); (iLeftLen <= min(iALen, iLeftMaxLen)); iLeftLen++)
{
for (const auto& it : vLeftLenSums[iLeftLen])
{
if (vRightLenSums[iALen - iLeftLen].count(iSum - it))
{
return true;
}
}
}
}
return false;
}
};
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快
速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
---|
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。
相关文章:

【动态规划】【数学】【C++算法】805 数组的均值分割
作者推荐 【动态规划】【数学】【C算法】18赛车 本文涉及知识点 动态规划 数学 805 数组的均值分割 给定你一个整数数组 nums 我们要将 nums 数组中的每个元素移动到 A 数组 或者 B 数组中,使得 A 数组和 B 数组不为空,并且 average(A) average(B)…...
Django笔记(五):模型models
首 Django中的模型对应数据库中的一张表格。 定义模型 player.py from django.db import modelsclass Player(models.Model):idx models.IntegerField(uniqueTrue)def __str__(self):return str(self.id)每个模型需要继承models类,如上Player模型定义了一个整形…...

一个golang小白使用vscode搭建Ununtu20.04下的go开发环境
文章目录 前言搭建go环境下载go安装包解压go压缩包完成安装配置环境变量编写一个helloword程序 安装VSCode插件安装智能提示插件安装go依赖包修改代理并重新安装依赖包 go.mod 和 go.workgo.modgo.work小试一下go.work 总结 前言 先交代一下背景,距离正式接触golan…...

【复现】Hytec Inter HWL 2511 SS路由器RCE漏洞_25
目录 一.概述 二 .漏洞影响 三.漏洞复现 1. 漏洞一: 四.修复建议: 五. 搜索语法: 六.免责声明 一.概述 Hytec Inter HWL 2511 SS是日本Hytec Inter 公司的一款工业级 LTE 路由器,可用于远程数据传输,例如收集传…...

Kafka系列(四)
本文接kafka三,代码实践kafkaStream的应用,用来完成流式计算。 kafkastream 关于流式计算也就是实时处理,无时间概念边界的处理一些数据。想要更有性价比地和java程序进行结合,因此了解了kafka。但是本人阅读了kafka地官网&#…...

【Linux学习】进程信号
目录 十七.进程信号 导言 17.1 linux中的信号列表 17.2 标准信号与实时信号 17.3 信号的产生 17.3.1 通过终端按键产生信号 17.3.2 调用系统函数产生信号 17.3.3 软件条件产生信号 17.3.4 硬件异常产生信号 17.3.5 【补充】核心转储 Core Dump 17.4 信号的阻塞 17.4.1 信号相关…...

机器学习没那么难,Azure AutoML帮你简单3步实现自动化模型训练
在Machine Learning 这个领域,通常训练一个业务模型的难点并不在于算法的选择,而在于前期的数据清理和特征工程这些纷繁复杂的工作,训练过程中的问题在于参数的反复迭代优化。 AutoML 是 Azure Databricks 的一项功能,它自动的对…...

数学建模实战Matlab绘图
二维曲线、散点图 绘图命令:plot(x,y,’line specifiers’,’PropertyName’,PropertyValue) 例子:绘图表示年收入与年份的关系 ‘--r*’:--设置线型;r:设置颜色为红色;*节点型号 ‘linewidth’:设置线宽࿱…...
TypeError the JSON object must be str, bytes or bytearray, not ‘list‘
在使用python的jason库时,偶然碰到以下问题 TypeError: the JSON object must be str, bytes or bytearray, not ‘list’ 通过如下代码可复现问题 >>> a [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>> import json >>> ra json.loads(a) Trac…...

数字IC后端设计实现 | PR工具中到底应该如何控制density和congestion?(ICC2Innovus)
吾爱IC社区星友提问:请教星主和各位大佬,对于一个模块如果不加干预工具会让inst挤成一团,后面eco修时序就没有空间了。如果全都加instPadding会导致面积不够overlap,大家一般怎么处理这种问题? 在数字IC后端设计实现中…...
产品经理与产品运营的区别和联系
一、两者的职责区别 产品经理的目的:是创造有价值的产品 产品运营的目的:是让产品能有效的发挥出它应有的价值 二、两者的工作内容区别产品经理的工作内容 产品的经理的目的是创造有价值的产品,因此产品经理的所有工作都是围绕着…...

CMU15-445-Spring-2023-分布式DBMS初探(lec21-24)
Lecture #21_ Introduction to Distributed Databases Distributed DBMSs 分布式 DBMS 将单个逻辑数据库划分为多个物理资源。应用程序(通常)并不知道数据被分割在不同的硬件上。系统依靠单节点 DBMS 的技术和算法来支持分布式环境中的事务处理和查询执…...
Arch linux 安装
Arch linux 安装 介绍下载制作iSO启动盘安装arch linux设置字体连接互联网 安装过程磁盘分区设置设置镜像源设置引导文件挂载点安装base等基础软件生成fatab文件更改时区更改编码、语言更改编码更改语言 用户管理设置root密码新建普通用户 安装grub启动网络服务/GDM查看系统网络…...

最新ChatGPT/GPT4科研应用与AI绘图及论文高效写作
详情点击链接:最新ChatGPT/GPT4科研应用与AI绘图及论文高效写作 一OpenAI 1.最新大模型GPT-4 Turbo 2.最新发布的高级数据分析,AI画图,图像识别,文档API 3.GPT Store 4.从0到1创建自己的GPT应用 5. 模型Gemini以及大模型Clau…...

【leetcode】移除元素
大家好,我是苏貝,本篇博客带大家刷题,如果你觉得我写的还不错的话,可以给我一个赞👍吗,感谢❤️ 目录 一.暴力求解法二.使用额外数组三.原地修改数组 点击查看题目 一.暴力求解法 若我们不考虑时间复杂度…...

Spring Boot整合Redis的高效数据缓存实践
引言 在现代Web应用开发中,数据缓存是提高系统性能和响应速度的关键。Redis作为一种高性能的缓存和数据存储解决方案,被广泛应用于各种场景。本文将研究如何使用Spring Boot整合Redis,通过这个强大的缓存工具提高应用的性能和可伸缩性。 整合…...
FastApi-参数接收的正确使用(2)
前言 本文是该专栏的第2篇,后面会持续分享FastApi以及项目实战的各种干货知识,值得关注。 本文重点介绍,在使用FastApi使用“参数接收”时遇到的三种类型“路径参数”,“查询参数”,“请求体”的相关问题以及相应的解决方案。 具体详细知识点,跟着笔者直接往下看正文。…...
三、需求规格说明书(软件工程示例)
1.引言 1.1编写目的 1.2项目背景 1.3定义 1.4参考资料 2.任务概述 2.1目标 2.2运行环境 2.3条件与限制 3.数据描述 3.1静态数据 3.2动态数据 3.3数据库介绍 3.4数据词典 3.5数据采集 4.功能需求 …...
Elasticsearch 查询语句概述
目录 1. Match Query 2. Term Query 3. Terms Query 4. Range Query 5. Bool Query 6. Wildcard Query 7. Fuzzy Query 8. Prefix Query 9. Aggregation Query Elasticsearch 是一个基于 Lucene 的搜索引擎,提供了丰富的查询DSL(Domain Specifi…...

kafka简单介绍和代码示例
“这是一篇理论文章,给大家讲一讲kafka” 简介 在大数据领域开发者常常会听到MQ这个术语,该术语便是消息队列的意思, Kafka是分布式的发布—订阅消息系统。它最初由LinkedIn(领英)公司发布,使用Scala语言编写,与2010年…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...

《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
【Go语言基础【12】】指针:声明、取地址、解引用
文章目录 零、概述:指针 vs. 引用(类比其他语言)一、指针基础概念二、指针声明与初始化三、指针操作符1. &:取地址(拿到内存地址)2. *:解引用(拿到值) 四、空指针&am…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

c++第七天 继承与派生2
这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...