真香,Grafana开源Loki日志系统取代ELK?
一、Loki是什么?
Loki是由Grafana Labs开源的一个水平可扩展、高可用性,多租户的日志聚合系统的日志聚合系统。它的设计初衷是为了解决在大规模分布式系统中,处理海量日志的问题。Loki采用了分布式的架构,并且与Prometheus、Grafana密切集成,可以快速地处理大规模的日志数据。该项目受 Prometheus 启发,官方的介绍是: Like Prometheus,But For Logs.。
与其他日志聚合系统相比, Loki 具有下面的一些特性:
- 不对日志进行全文索引。通过存储压缩非结构化日志和仅索引元数据,Loki的存储更加轻量,操作更加简单,更加节省成本。
- 通过使用与 Prometheus 相同的标签记录流对日志进行索引和分组,这使得日志的扩展和操作效率更高。
- 天然适合存储Kubernetes Pod 日志,Pod 标签之类的元数据会被自动处理,特点适合云云原生场景的应用日志处理。
- Grafana Labs出品,Grafana原生对Loki的支持就非常好。

二、Loki架构和功能
Loki 的架构非常简单,主要由以下 3 个部分组成:
- Loki:负责存储日志和处理查询。
- Promtail:日志收集的代理,负责在各端收集日志并将其发送给 Loki 。
- Grafana:用于日志搜索的UI 展示。

Loki 使用与 Prometheus 相同的服务发现和标签重新标记库,编写了 Pormtail,在 Kubernetes 中 Promtail 以 DaemonSet 方式运行在每个节点中,通过 Kubernetes API 得到日志的正确元数据,并将它们发送到 Loki。
也正是因为这个原因,通过这些标签,既可以查询日志的内容,也可以查询到监控的内容,这两种查询被很好的兼容,节省了分别存储相关日志和监控数据的成本,也减少了查询的切换成本。
整体来说可以把Loki的功能总结如下:
- 日志收集:Loki可以接收来自不同应用程序、主机和容器的日志数据。
- 日志存储:Loki使用可扩展的分布式存储后端存储日志数据,包括本地存储和云存储。
- 日志查询:Loki提供了一个高效的查询语言,可以快速地搜索和过滤日志数据。
- 日志索引:Loki使用标签索引和压缩算法对日志数据进行索引,可以大大减少存储空间和查询时间。
- 日志警报:Loki可以根据日志数据中的条件触发警报,并将警报发送到警报通道。
可以看到,作为一个日志处理系统,从收集、存储、查询、告警支持都是比较全面的,配合Grafana也能够比较好实现可视化,相关组件也比较简单。
三、Loki与ELK的优劣势对比?
ELK是大规模日志解决方案中的佼佼者,所以说到Loki,免不了要拿来跟ELK做个对比。两者都是日志解决方案,有相似之处,也有诸多不同。
- 架构
ELK(Elasticsearch、Logstash、Kibana)架构中Logstash用于日志收集和处理,Elasticsearch用于存储和索引,Kibana用于可视化和查询。而Loki则采用了分布式架构,将日志数据存储在多个节点上,Promtail进行日志收集,可视化依赖于Grafana。
- 存储
ELK使用Elasticsearch作为存储和索引引擎,Elasticsearch需要使用大量的硬盘空间和内存。而Loki使用了紧凑的索引和压缩算法,可以大大减少存储空间。
- 查询
ELK使用Lucene作为查询引擎,可以快速地搜索和过滤大规模的日志数据。但是在数据量过大和查询复杂度高一些的情况下,查询速度会变慢。Loki使用自己的查询语言,查询的场景一般也比较简单,可以快速地搜索和过滤日志数据。
- 部署
ELK的部署比较复杂,需要安装和配置多个组件。而Loki则采用了单一二进制文件的方式,部署比较简单。
3.1、Loki的优劣势
3.1.1、Loki优势
- 轻量级:相比ELK,Loki更加轻量级,因为它不需要一个单独的Elasticsearch集群来存储和索引日志数据。Loki具有较低的硬件要求,可以在较小的硬件上运行,例如使用少量内存和CPU。
- 高度可扩展性:Loki可以通过添加更多的Loki实例来实现水平扩展,这使得它更容易处理大量的日志数据。
- 简化的存储架构:Loki将日志数据存储在一个单一的列式存储引擎中,这使得它更容易维护和管理。
- 支持日志标签:Loki可以使用标签来过滤和查询日志数据,这使得它更加灵活。
- 直接支持Prometheus:Loki与Prometheus深度集成,这使得在Prometheus查询中使用Loki日志数据更加容易。
- 可伸缩性:Loki具有更好的可伸缩性,可以轻松地添加和删除节点以适应数据量的变化,而ELK需要更多的配置和管理工作来保持可伸缩性。
3.1.2、Loki的劣势
- 较少的可视化选项:Loki的可视化选项相对较少,因为它是一个相对较新的日志管理和分析工具。
- 学习曲线较陡峭:Loki使用的是自己的查询语言LokiQL,这需要一定的学习曲线。
- 需要额外的组件:虽然Loki本身是一个相对较小的组件,但它需要配合Promtail等其他组件来实现完整的日志管理和分析解决方案。
3.2、ELK的优劣势
3.2.1、ELK优势
- 成熟的生态系统:ELK已经有了一个成熟的生态系统,并且已经被广泛地使用和测试。
- 多样化的可视化选项:ELK提供了各种各样的可视化选项,包括基于时间序列的图表、热力图、地图等等。
- 丰富的插件库:ELK有丰富的插件库,可以方便地扩展其功能。
- 易于学习:ELK使用的是标准的查询语言,如Lucene查询语法和Elasticsearch查询DSL,这使得它相对容易学习。
3.2.2、ELK的劣势
- 相对重量级:ELK需要一个单独的Elasticsearch集群来存储和索引日志数据,这使得它相对较重。
- 复杂的存储架构:ELK使用的是分布式存储引擎,这使得它的存储架构相对复杂。
- 相对复杂的部相对复杂的部署和管理:ELK需要安装和配置多个组件,例如Elasticsearch、Logstash和Kibana,这使得它的部署和管理相对复杂。
- 较高的硬件要求:由于ELK需要处理大量的日志数据,因此需要大量的存储和处理能力,这可能需要更高的硬件要求和更大的部署成本。
总体而言,Loki和ELK都是优秀的日志解决方案,适合不同的使用场景。Loki相对轻量级,具有较高的可扩展性和简化的存储架构,但需要额外的组件和有一定的学习曲线。ELK则具有丰富的可视化选项和插件库,易于学习,但相对重量级,需要复杂的存储架构和较高的硬件要求,部署和管理也比较复杂。
具体如何选择取决于具体场景,若是数据量适中,数据属于时序类,如应用程序日志和基础设施指标,并且应用使用kubernetes Pod形式部署,则选择Loki比较合适;而ELK则适合更大的数据集和更复杂的数据处理需求,以及更多其他组件的日志收集场景。
四、Loki安装部署
要从0到1部署Loki,需要完成以下步骤:
- 安装Docker和Docker Compose。
- 创建一个Loki的Docker Compose文件。
- 配置Loki,包括日志收集和存储。
- 启动Loki服务,测试
4.1、Docker和Docker Compose安装
4.1.1、安装 Docker:
-
更新系统软件包:
sudo yum update -
安装所需的软件包:
sudo yum install -y yum-utils device-mapper-persistent-data lvm2 -
添加 Docker 的 yum 软件源:
sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo -
安装 Docker:
sudo yum install docker-ce docker-ce-cli containerd.io -
启动 Docker 服务:
sudo systemctl start docker -
验证 Docker 是否安装成功:
sudo docker run hello-world如果看到 “Hello from Docker!” 的输出,则说明 Docker 安装成功。
4.1.2、安装 Docker Compose:
-
安装依赖软件包:
sqlCopy codesudo yum install -y epel-release sudo yum install -y python-pip sudo pip install --upgrade pip -
安装 Docker Compose:
Copy code sudo pip install docker-compose -
验证 Docker Compose 是否安装成功:
cssCopy code docker-compose --version如果看到 Docker Compose 的版本信息,则说明安装成功。
注意:在安装 Docker 和 Docker Compose 之前,建议先确保系统已经安装了最新版本的软件包和依赖。如果之前已经安装了旧版本的 Docker 或 Docker Compose,需要先将其卸载。
4.2、创建一个Loki的Docker Compose文件。
可以通过以下命令创建一个Loki的Docker Compose文件:
$ mkdir loki
$ cd loki
$ touch docker-compose.yml
编辑docker-compose.yml文件,添加以下内容:
version: '3.7'services:loki:image: grafana/loki:latestports:- "3100:3100"volumes:- ./config:/etc/loki- ./data:/data/loki
这个Docker Compose文件定义了一个Loki服务,使用最新的grafana/loki镜像,将3100端口映射到主机,同时将配置和数据目录挂载到主机上。
4.3、配置Loki,包括日志收集和存储。
在配置目录下创建一个local-config.yaml文件,用于配置Loki的日志收集和存储。这个文件可以定义多个日志收集器,每个收集器都有一个唯一的名称。
以下是一个简单的local-config.yaml文件示例:
auth_enabled: false
server:http_listen_port: 3100grpc_listen_port: 9095schema_config:configs:- from: 2018-04-15store: boltdbobject_store: filesystemschema: v11index:prefix: index_period: 24hstorage_config:boltdb:directory: /data/loki/indexfilesystem:directory: /data/loki/chunksingester:lifecycler:address: 127.0.0.1ring:kvstore:store: inmemoryreplication_factor: 1heartbeat_timeout: 1mfinal_sleep: 0schunk_idle_period: 5mchunk_retain_period: 30sschema_config:configs:- from: 2019-05-24store: boltdbobject_store: filesystemschema: v11index:prefix: index_period: 24h
该配置文件包括了以下几个配置项:
- auth_enabled:是否开启认证。
- server:HTTP和gRPC服务监听地址。
- schema_config:配置日志索引和存储。
- storage_config:配置日志存储后端。
- ingester:配置日志收集。
4.4、启动Loki服务,测试
运行以下命令启动Loki服务:
$ docker-compose up -d
等待几秒钟后,可以通过以下命令查看服务是否正常启动:
$ docker ps
如果Loki服务正在运行,应该能够看到一个名为“loki_loki_1”的Docker容器。
此时,可以使用Loki的API或者Promtail将日志数据发送到Loki,然后通过Loki的查询语言查询日志数据。
在浏览器中访问http://localhost:3100/,进入Loki的Web UI。
Loki的Web UI提供了一个交互式的查询界面,可以输入查询语言和过滤条件,查询日志数据。
例如,可以输入以下查询语句:
{job="example-job"}
这将返回所有标签job值为“example-job”的日志条目。
还可以使用聚合函数和表达式来对日志数据进行处理和分析。例如,以下查询语句将计算每个标签instance的平均值,并返回结果:
avg_over_time({job="example-job"}[5m]) by (instance)
此外,Loki还提供了许多其他有用的功能,如警报、日志流水线和故障排除等。这些功能可以帮助用户更方便地管理和分析日志数据。
相关文章:
真香,Grafana开源Loki日志系统取代ELK?
一、Loki是什么? Loki是由Grafana Labs开源的一个水平可扩展、高可用性,多租户的日志聚合系统的日志聚合系统。它的设计初衷是为了解决在大规模分布式系统中,处理海量日志的问题。Loki采用了分布式的架构,并且与Prometheus、Graf…...
机器学习|多变量线性回归 | 吴恩达学习笔记
前文回顾:机器学习 | 线性回归(单变量) 目录 📚多维特征 📚多变量梯度下降 📚梯度下降法实践 🐇特征缩放 🐇学习率 📚特征和多项式回归 📚正规方程 &…...
高并发内存池
按照threadcache,centralcache,pagecache顺序所列 这里还需要一定的前期准备工作 首先是可以设计一个定长内存池 ObjectPool.h #pragma once #include<iostream> #include"Common.h" using std::cout; using std::endl; using std::…...
springboot mybatis-plus 对接 sqlserver 数据库 批处理的问题
问题: 在对接 sqlserver数据库的时候 主子表 保存的时候 子表批量保存 使用的 mybatis-plus提供的saveOrUpdateBatch 这个方法 但是 报错 报错内容为 : com.microsoft.sqlserver.jdbc.SQLServerException: 必须执行该语句才能获得结果。 框架版本 sprin…...
Acwing---843. n-皇后问题——DFS
n-皇后问题1.题目2.基本思想3.代码实现1.题目 n−皇后问题是指将 n 个皇后放在 nn 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。 现在给定整数 n,请你输出所有的满足条件的棋子摆法。 …...
Android事件分发机制
文章目录Android View事件分发机制:事件分发中的核心方法onTouchListener和onClickListener的优先级事件分发DOWN,MOVE,UP 事件分发CANCEL代码实践requestdisallowIntereptTouchEvent作用Android View事件分发机制: 事件分发中的核心方法 Android中事件…...
python版协同过滤算法图书管理系统
基于协同过滤算法的图书管理系统 一、简介(v信:1257309054) 本系统基于推荐算法给用户实现精准推荐图书。 根据用户对物品或者信息的偏好,发现物品或者内容本身的相关性,或者是发现用户的相关性,然…...
Redis基础入门
文章目录前言一、redis是什么?二、安装步骤1.下载安装包2.安装三、Redis的数据类型redis是一种高级的key-value的存储系统,其中的key是字符串类型,尽可能满足如下几点:字符串(String)列表(List)集合(Set,不允许出现重复…...
【微服务】Feign实现远程调用和负载均衡
目录 1.什么是Feign 2 订单微服务集成Feign 2.1.引入依赖 2.2添加注解 2.3编写Feign的客户端 2.4修改OrderServiceImpl.java的远程调用方法 2.5重启订单服务,并验证 总结 1.什么是Feign Feign是Spring Cloud提供的⼀个声明式的伪Http客户端, 它…...
Windows使用QEMU搭建arm64 ubuntu 环境
1. 下载 QEMU: https://qemu.weilnetz.de/w64/ QEMU UEFI固件文件: https://releases.linaro.org/components/kernel/uefi-linaro/latest/release/qemu64/QEMU_EFI.fd arm64 Ubuntu镜像: http://cdimage.ubuntu.com/releases/20.04.3/rel…...
NodeJS安装
一、简介Node.js是一个让JavaScript运行在服务端的开发平台,Node.js不是一种独立的语言,简单的说 Node.js 就是运行在服务端的 JavaScript。npm其实是Node.js的包管理工具(package manager),类似与 maven。二、安装步骤…...
Gin 优雅打印请求与回包内容
文章目录1.Gin 的 Middleware2.使用 Middleware 打印请求与回包内容3.多次读取请求 Body 的问题4.多次读取响应 Body 的问题5.小结参考文献在开发 Web 应用程序时,难免不会遇到功能或性能等问题。为了快速定位问题,需要打印请求和响应的内容。本文将介绍…...
关于k8s中ETCD集群备份灾难恢复的一些笔记
写在前面 集群电源不稳定,或者节点动不动就 宕机,一定要做好备份,ETCD 的快照文件很容易受影响损坏。重置了很多次集群,才认识到备份的重要博文内容涉及 etcd 运维基础知识了解静态 Pod 方式 etcd 集群灾备与恢复 Demo定时备份的任务编写二进…...
【设计模式之美 设计原则与思想:设计原则】19 | 理论五:控制反转、依赖反转、依赖注入,这三者有何区别和联系?
关于 SOLID 原则,我们已经学过单一职责、开闭、里式替换、接口隔离这四个原则。今天,我们再来学习最后一个原则:依赖反转原则。在前面几节课中,我们讲到,单一职责原则和开闭原则的原理比较简单,但是&#x…...
2023年全国最新高校辅导员精选真题及答案13
百分百题库提供高校辅导员考试试题、辅导员考试预测题、高校辅导员考试真题、辅导员证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 一、单选题 131.下列不属于我国国土空间具有的特点的是() A.水资…...
【XXL-JOB】XXL-JOB定时处理视频转码
【XXL-JOB】XXL-JOB定时处理视频转码 文章目录【XXL-JOB】XXL-JOB定时处理视频转码1. 准备工作1.1 高级配置1.2 分片广播2. 需求分析2.1 作业分片方案2.2 保证任务不重复执行2.2.1 保证幂等性3. 视频处理业务流程3.1 添加待处理任务3.2 查询待处理任务3.3 更新任务状态3.4 工具…...
optuna用于pytorch的轻量级调参场景和grid search的自定义设计
文章目录0. 背景:why optuna0.1 插播一个简单的grid search0.2 参考1. Optuna1.1 a basic demo与部分参数释义1.2 random的问题1.3 Objective方法类2. Optuna与grid search4. optuna的剪枝prune5. optuna与可视化6. 未完待续0. 背景:why optuna 小模型参…...
语法篇--汇编语言先导浅尝
一、相关概念 1.机器语言 机器语言(Machine Language)是一种计算机程序语言,由二进制代码(0和1)组成,可被计算机直接执行。机器语言是计算机硬件能够理解和执行的唯一语言。 机器语言通常由一系列的指令组…...
【ID:17】【20分】A. DS顺序表--类实现
时间限制1秒内存限制128兆字节题目描述用C语言和类实现顺序表属性包括:数组、实际长度、最大长度(设定为1000)操作包括:创建、插入、删除、查找类定义参考输入第1行先输入n表示有n个数据,即n是实际长度;接着输入n个数据…...
【java web篇】Tomcat的基本使用
📋 个人简介 💖 作者简介:大家好,我是阿牛,全栈领域优质创作者。😜📝 个人主页:馆主阿牛🔥🎉 支持我:点赞👍收藏⭐️留言Ὅ…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...
MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...
