当前位置: 首页 > news >正文

GPT应用_PrivateGPT

项目地址:https://github.com/imartinez/privateGPT

在这里插入图片描述

1 功能

1.1 整体功能,想解决什么问题

搭建完整的 RAG 系统,与 FastGPT 相比,界面比较简单。但是底层支持比较丰富,可用于知识库的完全本地部署,包含大模型和向量库。适用于保密级别比较高,或者完全不想使用收费模型和服务的情况。

1.2 当前解决了什么问题,哪些问题解决不了

PrivateGPT 提供了整体转换、入库、存储、匹配、合成答案,图形界面的解决方案,并提供图形界面用于检索操作

RAG 所面对的问题,比如不够准确,多文档组合生成答案这些问题,需要进一步细化工具,似乎不能通过架构来解决。另外,由于多数本地部署的模型效果与 ChatGPT 差距比较大,这里只是看到了本地部署的架构和实现的可能性,部署后用户是否能接受其效果,还待验证。

1.3 提供哪些功能点,其中哪些是刚需

核心功能是通过简单的操作,实现对本地文件的检索和问答,功能相对单一

1.4 用户使用难度,操作逻辑是否过于复杂

整体工具链使用了 poetry 构建,安装相对方便。但由于包含了深度学习库,肯定比一般项目复杂很多,安装时间长,占空间大

Dockerfile 如果写得有一点问题(频繁更新,难免有错),就会面临至少部分内容重新下载打包的问题。另外,由于可插拔的选项比较多,还需要用户进一步设置

2 技术栈

2.1 技术栈是什么:
  • PrivateGPT 不是一个用大量代码实现具体功能的项目,相反,它尽量使用现有工具,主要提供架构,组织现有方法,以实现功能。
2.2 现有底层工具消化了哪些常用功能
  • pytorch & cuda 本地支持深度学习模型,因此 image 也较大
  • llamaindex 文档的转换和管理
  • sentence-transformers 文本匹配
  • FastAPI 后端框架
  • Chroma 向量数据库
  • Qdrant 向量数据库
  • Gradio 界面由 Gradio 实现,有效降低了程序的复杂度
  • fern 管理文档(界面好看)
  • 使用 poetry 管理项目
2.3 代码分析(使用 cloc 工具统计)
  • 代码 3.2M,主要为 Python 代码,共 2733 行
  • local 版本 image 大小为 6.34G,external 版本为 5.68G
  • 核心代码在:private_gpt/private_gpt/ 目录下
2.4 使用场景
  • 完全本地化的知识库

3 商业模式

相对简单的项目,代码主要在架构和调用其它工具,依赖 llama-index,并实现了扩展,如支持几个主流向量数库,后面可能接入更多模型和向量库。可作为一种集成的方案,或者支持各种组件插拔的 Hub 使用。

4 使用

4.1 安装
  • 下载项目
$ git clone https://github.com/imartinez/privateGPT
$ cd privateGPT
  • 修改配置文件
vi settings.yaml

建议第一次运行时将 llm 设置为 openai,整体调通后,再使用本地 llm 下载模型;否则太过复杂,不容易定位问题。

  • 修改 Dockerfile.local(我 build 时报错)
RUN addgroup worker
RUN adduser --ingroup worker --system worker
  • 构建 local 环境
$ docker build . -f Dockerfile.local --build-arg HTTP_PROXY=xxx --build-arg HTTPS_PROXY=xxx -t private-gpt
  • 细节请见文档:https://docs.privategpt.dev/installation
4.2 运行

如果直接执行失败,建议以 root 用户启动 bash 进行调试

$ docker run --rm -p 8080:8080 -e OPENAI_API_KEY=xxx -e HTTP_PROXY=xxx -e HTTPS_PROXY=xxx --entrypoint bash -u 0 -it private-gpt
$ .venv/bin/python -m private_gpt

在 localhost 8080 端口可打开 gradio 应用

4.3 使用感受

gradio 主要用作 demo,实现功能比较简单,比如上传文档后无法删除,文本切块大小和模型的对应关系需要提前设置。

5 资源

文档

全面了解 PrivateGPT:中文技巧和功能实测

相关文章:

GPT应用_PrivateGPT

项目地址:https://github.com/imartinez/privateGPT 1 功能 1.1 整体功能,想解决什么问题 搭建完整的 RAG 系统,与 FastGPT 相比,界面比较简单。但是底层支持比较丰富,可用于知识库的完全本地部署,包含大…...

Qt‘s 撤销框架(Qt‘s Undo Framework)

一、开篇序言 我们常常有这样的业务场景,需要支持撤回的动作(即 undo)。如果让你来设计,聪明的你肯定也能立即想到解决问题的办法,对,将操作的 command { 对象,指令,属性 } 保存到一个容器中。 如果是仅需要单步撤销, 使用栈容器 保存command,动作执行即指令入栈, …...

【C++】stack、queue的使用及模拟实现

目录 一、stack1.1 stack的使用1.2 stack的模拟实现 二、queue2.1 queue的使用2.2 queue的模拟实现 一、stack 1.1 stack的使用 stack是一种容器适配器,它的特点是后进先出,只能在容器的一端进行插入和删除操作。 stack的使用很简单,主要有…...

外包干了2个多月,技术退步明显。。。。。

先说一下自己的情况,本科生,19年通过校招进入广州某软件公司,干了接近3年的功能测试,今年年初,感觉自己不能够在这样下去了,长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试…...

html5实现好看的年会邀请函源码模板

文章目录 1.设计来源1.1 邀请函主界面1.2 诚挚邀请界面1.3 关于我们界面1.4 董事长致词界面1.5 公司合作方界面1.6 活动流程界面1.7 加盟支持界面1.8 加盟流程界面1.9 加盟申请界面1.10 活动信息界面 2.效果和源码2.1 动态效果2.2 源码目录结构 源码下载 作者:xcLei…...

【C++】反向迭代器模拟实现

👀樊梓慕:个人主页 🎥个人专栏:《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 🌝每一个不曾起舞的日子,都是对生命的辜负 目录 前言 1.利用适配器的思想…...

【低照度图像增强系列(5)】Zero-DCE算法详解与代码实现(CVPR 2020)

前言 ☀️ 在低照度场景下进行目标检测任务,常存在图像RGB特征信息少、提取特征困难、目标识别和定位精度低等问题,给检测带来一定的难度。 🌻使用图像增强模块对原始图像进行画质提升,恢复各类图像信息,再使用目标…...

三维重建衡量指标记录

1、完整性比率 Completeness Rati (CR) 完整性比率 完整性比率是用于评估三维重建质量的指标之一,它衡量了重建结果中包含的真实物体表面或点云的百分比。完整性比率通常是通过比较重建结果中的点云或三维模型与真实或标准点云或模型之间的重叠来计算的。 具体计算…...

在WinForms中控制模态对话框的关闭行为

博客文章:在WinForms中控制模态对话框的关闭行为 引言 在Windows Forms (WinForms) 应用程序中,对话框的行为控制是提升用户体验的关键部分。特别是在使用模态对话框时,防止用户不经意间关闭它变得尤为重要。本文将探讨如何通过重写 FormClo…...

java web mvc-02-struts2

拓展阅读 Spring Web MVC-00-重学 mvc mvc-01-Model-View-Controller 概览 web mvc-03-JFinal web mvc-04-Apache Wicket web mvc-05-JSF JavaServer Faces web mvc-06-play framework intro web mvc-07-Vaadin web mvc-08-Grails Struts2 Apache Struts是一个用于创…...

文件上传之大文件分块上传

分久必合,合久必分 优势部分:减少了内存占用,可实现断点续传,并发处理,利用带宽,提高效率 不足之处:增加复杂性,增加额外计算存储 应用场景:云存储大文件上传、多媒体平台…...

测试用例评审流程

1:评审的过程 A:开始前做好如下准备 1、确定需要评审的原因 2、确定进行评审的时机 3、确定参与评审人员 4、明确评审的内容 5、确定评审结束标准 6、提前至少一天将需要评审的内容以邮件的形式发送给评审会议相关人员。并注明详审时间、地点及偿参与人员等。 7、 在邮件中提醒…...

鸿蒙开发案列一

1、开发需求 案例app一打开是“Hello world” 界面,开发者点击“Hello world”变成“Hello ArkUI”’ 2、源代码 Entry Component struct Hello {State person_name: string Worldbuild() {Row() {Column() {Text(Hello this.person_name).fontSize(50).fontWei…...

Vue实现图片预览,侧边栏懒加载,不用任何插件,简单好用

实现样式 需求 实现PDF上传预览,并且不能下载 第一次实现:用vue-pdf,将上传的文件用base64传给前端展示 问题: 水印第一次加载有后面又没有了。当上传大的pdf文件后,前端获取和渲染又长又慢,甚至不能用 修…...

Spring依赖注入之setter注入与构造器注入以及applicationContext.xml配置文件特殊值处理

依赖注入之setter注入 在管理bean对象的组件的时候同时给他赋值,就是setter注入,通过setter注入,可以将某些依赖项标记为可选的,因为它们不是在构造对象时立即需要的。这种方式可以减少构造函数的参数数量,使得类的构…...

碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测,预测新数据

碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测,预测新数据 目录 碳排放预测 | Matlab实现LSTM多输入单输出未来碳排放预测,预测新数据预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab实现LSTM长短期记忆神经网络多输入单输出未来…...

手拉手JavaFX UI控件与springboot3+FX桌面开发

目录 javaFx文本 javaFX颜色 字体 Label标签 Button按钮 //按钮单击事件 鼠标、键盘事件 //(鼠标)双击事件 //键盘事件 单选按钮RadioButton 快捷键、键盘事件 CheckBox复选框 ChoiceBox选择框 Text文本 TextField(输入框)、TextArea文本域 //过滤 (传入一个参数&a…...

02 分解质因子

一、数n的质因子分解 题目描述&#xff1a; 输入一个数n&#xff08;n<10^6&#xff09;,将数n分解质因数&#xff0c;并按照质因数从小到大的顺序输出每个质因数的底数和指数。 输入 5 输出 5 1 输入 10 输出 2 1 5 1 朴素解法&#xff1a; 首先求出1~n的所有质数…...

科技赋能智慧水利——山海鲸软件水利方案解析

作为山海鲸可视化软件的开发者&#xff0c;我们深感荣幸能为我国智慧水利建设提供强大助力。作为钻研数字孪生领域的开创者&#xff0c;我们希望不仅能为大家带来免费好用&#xff0c;人人都能用起来的数字孪生产品&#xff0c;还希望以其独特的技术优势和创新设计理念&#xf…...

C4.5决策树的基本建模流程

C4.5决策树的基本建模流程 作为ID3算法的升级版&#xff0c;C4.5在三个方面对ID3进行了优化&#xff1a; &#xff08;1&#xff09;它引入了信息值&#xff08;information value&#xff09;的概念来修正信息熵的计算结果&#xff0c;以抑制ID3更偏向于选择具有更多分类水平…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...