《动手学深度学习(PyTorch版)》笔记3.2
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过。
Chapter3 Linear Neural Networks
3.2 Implementations of Linear Regression from Scratch
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import random
import torch
from d2l import torch as d2ldef synthetic_data(w, b, num_examples): #@save"""Generate y = Xw + b + noise."""#generates a random matrix X with dimensions (num_examples, len(w)) using a normal distribution with a mean of 0 and standard deviation of 1.X = torch.normal(0, 1, (num_examples, len(w)),dtype=torch.float32) #calculates the target values y by multiplying the input matrix X with the weight vector w and adding the bias term b. y = torch.matmul(X, w) + b #And then adds some random noise to the target values y. The noise is generated from a normal distribution with mean 0 and standard deviation 0.01. y += torch.normal(0, 0.01, y.shape) return X, y.reshape((-1, 1)) #The -1 in the first dimension means that PyTorch should automatically infer the size of that dimension based on the total number of elements. In other words, it is used to ensure that the reshaped tensor has the same total number of elements as the original tensor.true_w=torch.tensor([2,-3.4],dtype=torch.float32)
true_b=4.2
features,labels=synthetic_data(true_w,true_b,1000)
print('features:',features[0],'\nlabel:',labels[0])d2l.set_figsize()
d2l.plt.scatter(features[:,(1)].detach().numpy(),labels.detach().numpy(),1)
#plt.show()#显示散点图
#"features[:, 1]" selects the second column of the features tensor.
#The detach() method is used to create a new tensor that shares no memory with the original tensor, and numpy() is then called to convert it to a NumPy array.
#"1" is the size of the markers in the scatter plot.def data_iter(batch_size,features,labels):num_examples=len(features)indices=list(range(num_examples))#随机读取文本random.shuffle(indices)#"Shuffle the indices"意为打乱索引 for i in range(0,num_examples,batch_size):batch_indices=torch.tensor(indices[i:min(i+batch_size,num_examples)])#"min(i + batch_size, num_examples)" is used to handle the last batch, which might have fewer examples than batch_size.yield features[batch_indices],labels[batch_indices]#初始化参数。从均值为0,标准差为0.01的正态分布中抽取随机数来初始化权重,并将偏置量置为0
w=torch.normal(0,0.01,size=(2,1),requires_grad=True)
b=torch.zeros(1,requires_grad=True)#定义线性回归模型
def linreg(X,w,b): #@savereturn torch.matmul(X,w)+b #广播机制:用一个向量加一个标量时,标量会加到向量的每一个分量上#定义均方损失函数
def squared_loss(y_hat,y): #@savereturn (y_hat-y.reshape(y_hat.shape))**2/2#定义优化算法:小批量随机梯度下降
def sgd(params,lr,batch_size): #@savewith torch.no_grad():for param in params:param-=lr*param.grad/batch_sizeparam.grad.zero_()#轮数num_epochs和学习率lr都是超参数,先分别设为3和0.03,具体方法后续讲解
lr=0.03
num_epochs=3
batch_size=10for epoch in range(num_epochs):for X,y in data_iter(batch_size,features,labels):l=squared_loss(linreg(X,w,b),y)l.sum().backward()#因为l是一个向量而不是标量,因此需要把l的所有元素加到一起来计算关于(w,b)的梯度sgd([w,b],lr,batch_size)with torch.no_grad():train_l=squared_loss(linreg(features,w,b),labels)print(f'epoch {epoch+1}:squared_loss {float(train_l.mean()):f}')
print(f'w的估计误差:{true_w-w.reshape(true_w.shape)}')
#结果中的grad_fn=<SubBackward0>表示这个tensor是由一个正向减法操作生成的
print(f'b的估计误差:{true_b-b}')#<RsubBackward1>表示由一个反向减法操作生成
相关文章:
《动手学深度学习(PyTorch版)》笔记3.2
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过。…...
elasticsearch8.x版本docker部署说明
前提,当前部署没有涉及证书和https访问 1、环境说明,我采用三个节点,每个节点启动两个es,用端口区分 主机角色ip和端口服务器Amaster192.168.2.223:9200服务器Adata192.168.2.223:9201服务器Bdata,master192.168.2.224:9200服务器Bdata192.1…...
使用scyllaDb 或者cassandra存储聊天记录
一、使用scyllaDb的原因 目前开源的聊天软件主要还是使用mysql存储数据,数据量大的时候比较麻烦; 我打算使用scyllaDB存储用户的聊天记录,主要考虑的优点是: 1)方便后期线性扩展服务器; 2)p…...
Visual Studio如何修改成英文版
1、打开 Visual Studio Installer 2、点击修改 3、找到语言包,选择需要的语言包,而后点击修改 4、等待下载 5、 安装完成后启动Visual Studio 6、在工具-->选项-->环境-->区域设置-->English并确定 7、重启 Visual Studio,配置…...
gin中使用swagger生成接口文档
想要使用gin-swagger为你的代码自动生成接口文档,一般需要下面三个步骤: 按照swagger要求给接口代码添加声明式注释,具体参照声明式注释格式。使用swag工具扫描代码自动生成API接口文档数据使用gin-swagger渲染在线接口文档页面 第一步&…...
最新AI创作系统ChatGPT网站系统源码,Midjourney绘画V6 ALPHA绘画模型,ChatFile文档对话总结+DALL-E3文生图
一、前言 SparkAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图文教程吧。已支持GPT…...
解析dapp:从底层区块链看DApp的脆弱性和挑战
每天五分钟讲解一个互联网只是,大家好我是啊浩说模式Zeropan_HH 在Web3时代,去中心化应用程序(DApps)已成为数字经济的重要组成部分。它们的同生性,即与底层区块链网络紧密相连、共存亡的特性,为DApps带来…...
机器学习整理
绪论 什么是机器学习? 机器学习研究能够从经验中自动提升自身性能的计算机算法。 机器学习经历了哪几个阶段? 推理期:赋予机器逻辑推理能力 知识期:使机器拥有知识 学习期:让机器自己学习 什么是有监督学习和无监…...
RISC-V常用汇编指令
RISC-V寄存器表: RISC-V和常用的x86汇编语言存在许多的不同之处,下面将列出其中部分指令作用: 指令语法描述addiaddi rd,rs1,imm将寄存器rs1的值与立即数imm相加并存入寄存器rdldld t0, 0(t1)将t1的值加上0,将这个值作为地址,取…...
第二篇:数据结构与算法-链表
概念 链表是线性表的链式存储方式,逻辑上相邻的数据在计算机内的存储位置不必须相邻, 可以给每个元素附加一个指针域,指向下一个元素的存储位 置。 每个结点包含两个域:数据域和指针域,指针域存储下一个结点的地址&…...
低代码配置-小程序配置
数据结构 {"data": {"layout": {"api":{"pageApi":{//api详情}},"config":{"title":"页面标题",},"listLayout": {"fields": [{"componentCode": "grid…...
第十八讲_HarmonyOS应用开发实战(实现电商首页)
HarmonyOS应用开发实战(实现电商首页) 1. 项目涉及知识点罗列2. 项目目录结构介绍3. 最终的效果图4. 部分源码展示 1. 项目涉及知识点罗列 掌握HUAWEI DevEco Studio开发工具掌握创建HarmonyOS应用工程掌握ArkUI自定义组件掌握Entry、Component、Builde…...
OJAC近屿智能张立赛博士揭秘GPT Store:技术创新、商业模式与未来趋势
Look!👀我们的大模型商业化落地产品📖更多AI资讯请👉🏾关注Free三天集训营助教在线为您火热答疑👩🏼🏫 亲爱的伙伴们: 1月31日晚上8:30,由哈尔滨工业大学的…...
Java接收curl发出的中文请求无法解析
最近做项目遇到了这种情况,Java接收curl发出的中文请求无法解析,英文请求一切正常,中文请求则对方服务器无法解析,可以猜测是中文导致的编码问题,但是奇怪的是,本地输出json也没有乱码,编解码正…...
Java设计模式-外观模式(11)
大家好,我是馆长!今天开始我们讲的是结构型模式中的外观模式。老规矩,讲解之前再次熟悉下结构型模式包含:代理模式、适配器模式、桥接模式、装饰器模式、外观模式、享元模式、组合模式,共7种设计模式。。 外观模式(Decorator Pattern) 定义 外观(Facade)模式一种通…...
HCS-华为云Stack-FusionSphere
HCS-华为云Stack-FusionSphere FusionSphere是华为面向多行业客户推出的云操作系统解决方案。 FusionSphere基于开放的OpenStack架构,并针对企业云计算数据中心场景进行设计和优化,提供了强大的虚拟化功能和资源池管理能力、丰富的云基础服务组件和工具…...
C++类模板实现顺序表SeqList
main函数 #include<iostream> #include<stdlib.h> #include"SeqList.cpp"using namespace std;typedef int ElementType; int main(void) {SeqList< ElementType, 10> SeqList(1);cout << SeqList.ListLength() << endl;bool result;…...
sklearn 学习-混淆矩阵 Confusion matrix
混淆矩阵Confusion matrix:也称为误差矩阵,通过计算得出矩阵的结果用来表示分类器的精度。其每一列代表预测值,每一行代表的是实际的类别。 from sklearn.metrics import confusion_matrixy_true [2, 0, 2, 2, 0, 1] y_pred [0, 0, 2, 2, 0…...
C#,数据检索算法之跳跃搜索(Jump Search)的源代码
数据检索算法是指从数据集合(数组、表、哈希表等)中检索指定的数据项。 数据检索算法是所有算法的基础算法之一。 本文提供跳跃搜索的源代码。 1 文本格式 using System; namespace Legalsoft.Truffer.Algorithm { public static class ArraySe…...
ElasticSearch 开发总结(九)——SearchType:DFS_QUERY_THEN_FETCH和QUERY_THEN_FETCH
ElasticSearch 开发总结(九)——SearchType:DFS_QUERY_THEN_FETCH和QUERY_THEN_FETCH-CSDN博客 1.SearchType ES的搜索类型 有一个类SearchType(如下图示),关于该类的描述: Search type repre…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
