每日一题 力扣2846 边权重均等查询
2846. 边权重均等查询
题目描述:
现有一棵由 n 个节点组成的无向树,节点按从 0 到 n - 1 编号。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ui, vi, wi] 表示树中存在一条位于节点 ui 和节点 vi 之间、权重为 wi 的边。
另给你一个长度为 m 的二维整数数组 queries ,其中 queries[i] = [ai, bi] 。对于每条查询,请你找出使从 ai 到 bi 路径上每条边的权重相等所需的 最小操作次数 。在一次操作中,你可以选择树上的任意一条边,并将其权重更改为任意值。
注意:
- 查询之间 相互独立 的,这意味着每条新的查询时,树都会回到 初始状态 。
- 从
ai到bi的路径是一个由 不同 节点组成的序列,从节点ai开始,到节点bi结束,且序列中相邻的两个节点在树中共享一条边。
返回一个长度为 m 的数组 answer ,其中 answer[i] 是第 i 条查询的答案。
示例1:
示例2:
提示:
1 <= n <= 10^4edges.length == n - 1edges[i].length == 30 <= ui, vi < n1 <= wi <= 26- 生成的输入满足
edges表示一棵有效的树1 <= queries.length == m <= 2 * 104queries[i].length == 20 <= ai, bi < n
思路:
要我们以queries数组为遍历基础,先找到ai到bi的路径,然后统计路径上的权值,找到频次最高的权值出现的次数,用路径长度-频次即为所求的最小操作次数。
求最近公共祖先,LCA(Least Common Ancestors),即最近公共祖先,这种描述是基于树结构的,也即我们通通常只在树结构中考虑祖先问题。树实际上就是图论中的有向无环图,而要研究LCA问题,首先我们要指定树中的一个顶点为根节点,并以该节点遍历有向无环图,生成一颗DFS序下的树,假设我们要查询的两个节点为u,v,DFS序下根节点到两点的最短路径分别是(r,u),和(r,v),LCA就是(r,u)与(r,v)公共路径的最后一个节点。
而求两点间的路径长度,可以通过倍增法求 LCA 来实现。我们记两点分别为 u 和 v,最近公共祖先为 x,那么 u 到 v的路径长度就是 depth(u)+depth(v)−2×depth(x)。
另外,我们可以用一个数组 cnt[n][26] 记录根节点到每个节点上,每个边权重出现的次数。那么 u 到 v 的路径上,出现次数最多的边的次数就是 max0≤j<26cnt[u][j]+cnt[v][j]−2×cnt[x][j]。其中 x 为 u和 v的最近公共祖先。

代码:
class Solution {
public:vector<int> minOperationsQueries(int n, vector<vector<int>>& edges, vector<vector<int>>& queries) {int m = 32 - __builtin_clz(n);vector<pair<int, int>> g[n];int f[n][m];int p[n];int cnt[n][26];int depth[n];memset(f, 0, sizeof(f));memset(cnt, 0, sizeof(cnt));memset(depth, 0, sizeof(depth));memset(p, 0, sizeof(p));for (auto& e : edges) {int u = e[0], v = e[1], w = e[2] - 1;g[u].emplace_back(v, w);g[v].emplace_back(u, w);}queue<int> q;q.push(0);while (!q.empty()) {int i = q.front();q.pop();f[i][0] = p[i];for (int j = 1; j < m; ++j) {f[i][j] = f[f[i][j - 1]][j - 1];}for (auto& [j, w] : g[i]) {if (j != p[i]) {p[j] = i;memcpy(cnt[j], cnt[i], sizeof(cnt[i]));cnt[j][w]++;depth[j] = depth[i] + 1;q.push(j);}}}vector<int> ans;for (auto& qq : queries) {int u = qq[0], v = qq[1];int x = u, y = v;if (depth[x] < depth[y]) {swap(x, y);}for (int j = m - 1; ~j; --j) {if (depth[x] - depth[y] >= (1 << j)) {x = f[x][j];}}for (int j = m - 1; ~j; --j) {if (f[x][j] != f[y][j]) {x = f[x][j];y = f[y][j];}}if (x != y) {x = p[x];}int mx = 0;for (int j = 0; j < 26; ++j) {mx = max(mx, cnt[u][j] + cnt[v][j] - 2 * cnt[x][j]);}ans.push_back(depth[u] + depth[v] - 2 * depth[x] - mx);}return ans;}
};
大意我懂了,但是俺似乎写不出来这么完整的,哭!然后继续学!
相关文章:
每日一题 力扣2846 边权重均等查询
2846. 边权重均等查询 题目描述: 现有一棵由 n 个节点组成的无向树,节点按从 0 到 n - 1 编号。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] [ui, vi, wi] 表示树中存在一条位于节点 ui 和节点 vi 之间、权重…...
【Docker】Docker学习⑨ - 单机编排之Docker Compose
【Docker】Docker学习⑨ - 单机编排之Docker Compose 一、Docker简介二、Docker安装及基础命令介绍三、Docker镜像管理四、Docker镜像与制作五、Docker数据管理六、网络部分七、Docker仓库之单机Dokcer Registry八、Docker仓库之分布式Harbor九、单机编排之Docker Compose1 基础…...
ES6笔记-symbol
ES6 symbol 是什么 ES5的对象属性名是字符串,这容易造成属性名的冲突。symbol是一种机制,保证每个属性的名字都是独一无二的。这样就从根本上防止属性名冲突。 它是一种原始数据类型Symbol,表示独一无二的值。它属于javaScript语言的原生数据类型之一。…...
C++设计模式介绍:优雅编程的艺术
物以类聚 人以群分 文章目录 简介为什么有设计模式? 设计模式七大原则单一职责原则(Single Responsibility Principle - SRP)开放封闭原则(Open/Closed Principle - OCP)里氏替换原则(Liskov Substitution …...
GitLab升级版本(任意用户密码重置漏洞CVE-2023-7028)
目录 前言漏洞分析影响范围查看自己的GitLab版本升级路程 升级过程13.1.1113.8.8 - 14.0.1214.3.614.9.5 - 16.1.6 前言 最近GitLab发了个紧急漏洞需要修复,ok接到命令立刻着手开始修复,在修复之前先大概了解一下这个漏洞是什么东西 漏洞分析 1、组件…...
Unity——八叉树的原理与实现
八叉树原理 八叉树(Octree)是一种用于在三维空间中进行空间分割的数据结构。它将三维空间递归地划分为八个子空间,每个子空间对应于一个八叉树节点。这种分割方式可以有效地组织和管理场景中的对象,提高检索效率,特别…...
android 自定义软键盘的显示和隐藏
记一下,以后不用找在InputMethodService中有这两个方法可以看到软键盘显示状态 //软键盘隐藏 override fun onWindowHidden() {super.onWindowHidden() } //软键盘显示 override fun onWindowShown() {super.onWindowShown() } 在activity中可以通过这种方法看到软键盘显示状…...
基于openssl v3搭建ssl安全加固的c++ tcpserver
1 概述 tcp server和tcp client同时使用openssl库,可对通信双方流通的字节序列进行加解密,保障通信的安全。本文以c编写的tcp server和tcp client为例子,openssl的版本为v3。 2 安装openssl v3 2.1 安装 perl-IPC-Cmd openssl项目中的co…...
11.2 Web开发_CSS入门(❤❤)
11.2 Web开发_CSS入门❤❤ 1. CSS简介1.1 基础案例2. CSS书写的位置2.1 行内式2.2 内嵌式2.3 外链式3. CSS基础选择器3.1 标签选择器3.2 id选择器3.3 类选择器3.4 选择器优先级3.5 通配符选择器4. 多类名5. 样式的两种特性5.1 层叠性...
[docker] Docker的数据卷、数据卷容器,容器互联
一、数据卷(容器与宿主机之间数据共享) 数据卷是一个供容器使用的特殊目录,位于容器中。可将宿主机的目录挂载到数据卷上,对数据卷的修改操作立刻可见,并且更新数据不会影响镜像,从而实现数据在宿主机与容…...
ATF(TF-A)安全通告TF-V11——恶意的SDEI SMC可能导致越界内存读取(CVE-2023-49100)
目录 一、ATF(TF-A)安全通告TFV-11 (CVE-2023-49100) 二、透过事务看本质SDEI是干啥的呢? 三、CVE-2023-49100 1、GICv2 systems 2、GICv3 systems 四、漏洞修复 一、ATF(TF-A)安全通告TFV-11 (CVE-2023-49100) Title 恶意的SDEI SMC可能导致越界内存读取&am…...
如何查找SpringBoot应用中的请求路径(不使用idea)
背景 昨天有个同事向我咨询某个接口的物理表是哪个,由于公司业务较多、这块业务的确不是我负责的,也没有使用idea不能全局搜索(eclipse搜不到jar内的字符串),也就回复了不清楚。 除了自己写代码输出servlet的路径和类外,发现了一…...
56. 合并区间 - 力扣(LeetCode)
题目描述 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。 题目示例 输入:intervals [[1,3…...
数据结构篇-03:堆实现优先级队列
本文着重在于讲解用 “堆实现优先级队列” 以及优先级队列的应用,在本文所举的例子中,可能使用优先级队列来解并不是最优解法,但是正如我所说的:本文着重在于讲解“堆实现优先级队列” 堆实现优先级队列 堆的主要应用有两个&…...
linux clickhouse 安装
1、官网下载clickhouse安装包 下载地址, clickhouse分lts和stable版本,lts是长期版本,一般选择安装lts版本。 其中clickhouse-server是clickhouse服务,就是用来访问数据存储数据,clickhouse-client是用来通过命令访问数…...
【游戏客户端开发的进阶路线】
*** 游戏客户端开发的进阶路线 春招的脚步越来越近,我们注意到越来越多的同学们都在积极学习游戏开发,希望能在这个充满活力的行业中大展拳脚。 当我们思考如何成为游戏开发领域的佼佼者时,关键在于如何有效规划学习路径。 🤔 我…...
vue3+naiveUI二次封装的v-model 联动输入框
根据官网说明使用 源码 <template><div class"clw-input pt-3"><n-inputref"input":value"modelValue":type"type":title"title"clearable:disabled"disabled":size"size"placeholder&…...
百度Apollo | 实车自动驾驶:感知、决策、执行的无缝融合
🎬 鸽芷咕:个人主页 🔥 个人专栏:《linux深造日志》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! ⛳️ 推荐 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下…...
DAY31:贪心算法入门455、53、376
理论基础 贪心算法的基本思路是通过局部最优从而达到全局最优,但是有时候局部最优并不一定导致全局最优,这样就需要动态规划的方法。但一部分题目是能通过贪心得到的。贪心的证明一般用到数学归纳法和反证法。在实际的问题中,没有统一的代码…...
LeetCode:376.摆动序列
个人主页:仍有未知等待探索-CSDN博客 专题分栏:算法_仍有未知等待探索的博客-CSDN博客 题目链接:376. 摆动序列 - 力扣(LeetCode) 一、题目 如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称…...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
1.3 VSCode安装与环境配置
进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件,然后打开终端,进入下载文件夹,键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...


