深度学习(6)---Transformer
文章目录
- 一、介绍
- 二、架构
- 2.1 Multi-head Attention
- 2.2 Encoder(编码器)
- 2.3 Decoder(解码器)
- 三、Encoder和Decoder之间的传递
- 四、Training
- 五、其他介绍
- 5.1 Copy Mechanism
- 5.2 Beam Search
一、介绍
1. Transformer是一个Seq2Seq(Sequence-to-Sequence)的模型,这意味着它能够处理从输入序列到输出序列的问题。在Seq2Seq模型中,输入是一段序列,输出也是一段序列,输出序列的长度通常由模型自身决定。这种模型在自然语言处理(NLP)领域有广泛的应用,例如语音识别、机器翻译、语音合成、聊天机器人训练等。
2. Transformer作为Seq2Seq模型的一种实现,采用了自注意力机制(self-attention)和位置编码(position encoding)等技术,使其在处理长序列时具有更好的性能。相比传统的Seq2Seq模型,Transformer的编码器和解码器部分内部不再使用RNN网络,而是采用了自注意力机制,这使得模型在处理序列数据时更加高效。Transformer的整体模型架构如下图所示:
二、架构
2.1 Multi-head Attention
1. 在Transformer中,通过添加一种多头注意力机制,可进一步完善自注意力层。具体做法:首先,通过 h h h 个不同的线性变换对 Query、Key 和 Value 进行映射;然后,将不同的 Attention 拼接起来;最后,再进行一次线性变换。基本结构如下图所示:
2. 在多头注意力下,我们为每组注意力单独维护不同的 Query、Key 和 Value 权重矩阵,从而得到不同的 Query、Key 和 Value 矩阵。
3. 按照上面的方法,比如使用不同的权重矩阵进行 8 次自注意力计算,就可以得到 8 个不同的 Z Z Z 矩阵。
因为前馈神经网络层接收的是 1 个矩阵(每个词的词向量),而不是上面的 8 个矩阵。因此,我们需要一种方法将这 8 个矩阵整合为一个矩阵。具体方法如下:
- (1) 把 8 个矩阵拼接起来。
- (2) 把拼接后的矩阵和一个权重矩阵 W O W^O WO 相乘。
- (3) 得到最终的矩阵 Z Z Z,这个矩阵包含了所有注意力头的信息。这个矩阵会输入到前馈神经网络层。
4. 总结:多头注意力机制通过并行化处理多个注意力头来提高效率。每个注意力头都可以独立计算注意力权重,衡量输入信息中不同部分的关联程度。这样,模型可以从多个不同的角度和层次上关注输入数据,捕捉到更多的语义信息。
多头注意力机制的优势在于其能够更好地理解句子的句法和语义结构信息,并提高模型从不同位置学习特征信息的能力。
2.2 Encoder(编码器)
1. 在人工智能中,Encoder通常指的是神经网络中的一个部分,用于将输入数据转换成一种适合解码器网络处理的形式。
在序列到序列(Seq2Seq)模型中,Encoder用于将输入序列转换为一种固定维度的向量表示,这种向量表示可以作为后续处理和生成任务的基础。例如,在机器翻译任务中,Encoder可以将输入的源语言句子转换为一种固定维度的向量表示,然后这个向量可以作为Decoder的输入,以生成目标语言的翻译结果。
注解:常见的编码方法包括独热编码(One-Hot Encoding)和标签编码(Label Encoding)等。独热编码是一种将类别特征转换为二进制向量表示的方法,其中每个向量只有一个元素为1,其余元素为0。这种方法适用于类别特征数量较小的情况。标签编码则是一种将类别特征转换为整数表示的方法,其中每个整数代表一个特定的类别。这种方法适用于类别特征数量较大的情况。
2. Transformer中的Encoder如下图所示:
3. Encoder的一个Block如下图所示,在自注意力和FC上加了Residual,并且使用了Layer norm。
注解:
(1)FC层指的是全连接层(Fully Connected Layer),也被称为密集层或线性层。全连接层是一种常见的神经网络层,其每个神经元都与前一层的所有神经元相连,因此被称为全连接。全连接层通常位于神经网络的最后几层,用于将学习到的特征组合起来生成最终的输出结果。
(2)Batch Norm,即批规范化,是深度学习中常用的一种技术,主要用于解决每批数据训练时的不规则分布给训练造成的困难。具体地说,Batch Norm会对神经网络的某一层的batch输出进行归一化,即先进行z-score归一化,然后进行线性变换,最后再输入到激励函数中。这样做可以使得网络的训练更快、更稳定。同时,Batch Norm也是一种正则化的方式,可以代替其他正则化方式如dropout,但也可能消融数据之间的许多差异信息。因此,并不能说Batch Norm一定适用于任何任务。
(3)Layer Norm是一种神经网络中的归一化技术,它对每一个样本内的所有值进行标准化处理。LayerNorm的具体过程是将每一个样本的所有特征值进行均值和方差的归一化,使数据落在均值为0,方差为1的分布中。与Batch Normalization(BatchNorm)不同,LayerNorm是在每个样本的维度上进行归一化,而不是在每个batch的维度上进行归一化。因此,LayerNorm可以更好地处理不同大小和长度的序列数据,尤其在自然语言处理和循环神经网络等任务中表现优异。
2.3 Decoder(解码器)
1. 编码器的作用是将信息转换为一种适合传输、存储或处理的形式,而解码器则将其还原为原始形式。
在机器学习和深度学习的上下文中,Decoder通常指的是一个神经网络模型的一部分,用于将编码后的数据或特征映射回原始空间。例如,在自编码器(Autoencoder)中,Decoder部分负责将压缩编码的向量解码成与输入数据相似的输出数据。
除了自编码器,Decoder还可以应用于其他任务,如生成对抗网络(GAN)中的生成器、序列到序列(Sequence-to-Sequence)模型中的解码器等。在这些任务中,Decoder通常负责将输入数据转换为目标形式的输出数据,例如从编码的向量生成图像、文本或语音等。
2. 我们以机器翻译为例,Decoder接收来自Encoder的一组向量。
(1) 先给Decoder一个特殊的符号,代表begin,在Decoder产生的文本里产生一个开始的符号。
(2) 接下来Decoder会产生一个向量,向量长度和对应语言词汇库的长度一样,就是希望识别的词汇库的总词汇数。
(3) 在得到该向量前做一个 s o f t m a x softmax softmax 分类,给每个字一个分数,选择最大的。把新得到的输出“机”表示为一个向量,作为Decoder新的输入,不断进行下去。
注意:每个输出向量,都结合了在它之前的输入(或说输出)向量,比如”学“的输出是学习了输入的begin、“机”、“器”。 且由于后面的输出与前面的输出有关联,所以可能会出现一步错步步错的情况。
3. Transformer中的Decoder如下图所示:
4. Encoder与Decoder比较,主要在于Decoder多了Masked部分。
5. 在Self-attention中,一个输出要考虑所有的输入。而Masked部分就是从每个输出都考虑所有输出变为只考虑前面的输入。
6. 另外的关键点:Decoder必须自己决定输出的长度。所以在输出想要的结果后,需要输出一个“断”的符号,即表示结束,才能没有后续的输出。
三、Encoder和Decoder之间的传递
1. Encoder和Decoder之间传递资讯需要靠下面图中红框的部分。在Cross attention部分中,两个输入来自Encoder,一个输入来自Decoder。
2. Decoder产生一个 q q q 会和Encoder的输出 a a a 做注意力机制的运算,结果进入FC。
四、Training
1. 前面讲述的所有内容都是在模型已经训练好的基础上进行的。那在训练模型时,以机器翻译为例,我们会给一段语音和真实的对应标签。那每一个的输出的结果我们都希望最接近真实的标签,每产生一个字就是从几千个字中进行的分类问题。训练时希望所有的字(含END)的交叉熵最少。
注意:在训练时我们会给Decoder正确答案。
2. Teach Forcing是一种训练技术,在Transformer模型中用于提高训练效率和收敛速度。Teach Forcing允许模型在一次输入全部目标序列,以并行的方式一次输出完整的目标序列,从而大大提高了训练效率。
Teach Forcing的主要思想是,在训练过程中,我们强制模型使用正确的单词作为目标序列的输入,而不是使用模型自身的预测结果。这样可以避免因中间预测错误而对后续序列的预测产生影响,从而加快训练速度。
在Transformer模型中,Teach Forcing的实现方式是将正确的单词序列和对应输出传递到Decoder模块。在每个时间步,我们使用上一时刻的正确单词作为输入,而不是使用模型自身的预测结果。这样,每个时刻的输入不再依赖上一时刻的输出,而是依赖真实的目标序列。
五、其他介绍
5.1 Copy Mechanism
1. 其实有时候我们在一些对话中(如聊天机器人)只需要复制一些信息。在Transformer中有这种技术,叫Copy Mechanism。
2. Copy Mechanism是一种在文本生成领域中使用的技术,其目的是在生成输出时复制或指向输入序列的元素。这种机制最早由Vinyals等人于2015年在Pointer Network中提出,有时也被称为Pointer Mechanism。
Copy Mechanism的设计初衷是为了解决传统seq2seq模型输出序列词汇表无法随着输入序列长度改变而改变的问题。Pointer Network将attention机制中针对输入序列的权重用作指向输入序列的指针,因此其输出为权重最大的位置的输入序列元素,实现直接操作输入序列元素作为输出,而不需要设定输出序列词汇表。
在对话任务中,Copy Mechanism被用来复制对话上下文和响应之间的单词,这有助于提升模型的性能。因为对话中经常会有重复的短语或专有名词等低频词,这些词靠标准RNN很难生成。
总之,Copy Mechanism的本质是提取(extract)关键词,这个输出可以作为上游模块,和其它任务相结合。
5.2 Beam Search
1. 在Transformer模型中,Beam Search是一种启发式搜索算法,用于生成最可能的输出序列。Beam Search的核心思想是使用宽度为 k k k 的搜索来找到最可能的输出序列。在每个时间步,算法将保留 k k k 个最可能的输出,并根据这些输出生成下一个时间步的候选输出。
具体来说,Beam Search从初始状态开始,对于每个时间步,它将计算当前状态下的所有可能输出的概率。然后,它选择概率最高的 k k k个输出作为候选输出。对于每个候选输出,算法将其与下一个时间步的候选输出相乘,并选择概率最高的 k k k 个输出作为下一个时间步的候选输出。这个过程一直持续到达到最大长度或满足终止条件为止。
Beam Search的一个关键参数是宽度 k k k,它决定了搜索的宽度。较大的 k k k 值将导致更宽的搜索,从而增加输出的多样性,但也可能导致更多的计算成本。较小的k值将导致更窄的搜索,但可能忽略一些好的候选输出。
2. 在Decoder中提到,每个输出都是分数最大的,但有时找出分数最高的不一定就是最好的,这取决于任务的特性。当目标非常明确时,Beam Search性能好,如语音辨识;当需要一点创造力、结果有多种可能时,需要在Decoder中加入随机性。
相关文章:

深度学习(6)---Transformer
文章目录 一、介绍二、架构2.1 Multi-head Attention2.2 Encoder(编码器)2.3 Decoder(解码器) 三、Encoder和Decoder之间的传递四、Training五、其他介绍5.1 Copy Mechanism5.2 Beam Search 一、介绍 1. Transformer是一个Seq2Seq(Sequence-to-Sequence)…...

day34WEB 攻防-通用漏洞文件上传黑白盒审计逻辑中间件外部引用
目录 一,白盒审计-Finecms-代码常规-处理逻辑 黑盒思路:寻找上传点抓包修改突破获取状态码及地址 审计流程:功能点-代码文件-代码块-抓包调试-验证测试 二,白盒审计-CuppaCms-中间件-.htaccess 三,白盒审计-Metin…...
面试经典 150 题 ---- 移除元素
面试经典 150 题 ---- 移除元素 移除元素方法一:双指针方法二:双指针优化 移除元素 方法一:双指针 题目要求在原数组的基础进行元素的删除,所以输出的数组长度一定小于原数组的长度,因此可以使用双指针,r…...
12.如何将图像转化为矩阵形式
read_image (Image, printer_chip/printer_chip_01) *获取图片大小 get_image_size (Image, Width, Height) *获取区域里各点(每个点)的坐标 *Image 输入参数, *Rows 输出参数 数组, *Columns 输出参数,数组 get_region_points (Image, Rows…...

语义分割(2) :自定义Dataset和Dataloader
文章目录 1. 数据处理1.1 标签转换(json2mask和json2yolo)1.1.1 json2mask1.1.2 json2yolo 1.2 划分数据集1.2 不规范的标签图片处理1.3 批量修改图片后缀 2 自定义Dataset 和 Dataloader2.1 自定义Dataset2.1.1 数据增强(1) 对图像进行缩放并且进行长和宽的扭曲(2) 随机翻转图…...

Android Automotive:在路上释放 Android 操作系统的力量
Android Automotive:在路上释放 Android 操作系统的力量 Android 在汽车行业的历程车载信息娱乐系统 (IVI) 的演变汽车中的 Android:演变和进步Android 汽车操作系统的崛起Polestar 2:开创 Android 汽车体验Android 开源项目 (AOSP) 及其他项…...

从零开始做题:逆向 ret2shellcode orw
1.题目信息 BUUCTF在线评测 下载orw时防病毒要关闭 2.题目分析 orw是open、read、write的简写。有时候binary会通过prctl、seccomp进行沙箱保护,并不能getshell。只能通过orw的方式拿到flag。 fdopen(‘./flag’); # 打开flag文件,得到fd…...

【DDD】学习笔记-限界上下文的控制力
引入限界上下文的目的,不在于如何划分,而在于如何控制边界。因此,我们就需要将对限界上下文的关注转移到对控制边界的理解。显然,对应于统一语言,限界上下文是语言的边界,对于领域模型,限界上下…...
springboot(ssm医院疫情防控系统 疫苗核酸预约系统Java系统
springboot(ssm医院疫情防控系统 疫苗核酸预约系统Java系统 开发语言:Java 框架:springboot(可改ssm) vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.7&a…...
go语言中的Mutex
Golang以其并发性Goroutines而闻名。不仅是并发,还有更多。 因此,在这种情况下,我们必须确保多个goroutines不应该同时试图修改资源,从而导致冲突。 为了确保资源一次只能被一个goroutine访问,我们可以使用一个叫做syn…...
Vue的状态管理Vuex
文章目录 一、介绍二、install三、store1、介绍2、创建并全局引入3、单一状态树4、多模块状态树(无命名空间)5、多模块状态树(有命名空间) 本人最近在找工作,有推荐的小伙伴私我,不胜感激。 一、介绍 Vue…...

单片机14-17
目录 LCD1602 LCD1602液晶显示屏 直流电机驱动(PWM) LED呼吸灯 直流电机调速 AD/DA(SPI通信) AD模数转换 DA数模转换 红外遥控(外部中断) 红外遥控 红外遥控电机调速 LCD1602 LCD1602液晶显示屏 …...
DAY_12(树链剖分)
中途摆烂了几天加上考试比赛啥的,导致目前写博客断了。。差了好几天的题目没学了qwq,现在还是按照每天学的东西来写博客吧 今天主要学了树链剖分,怎么说呢,虽然随便拿出今天写的一道题目来看,码量都是一两百行的&…...
Compose | UI组件(九) | Column,Row - 线性布局
文章目录 前言Column 的含义Column 的使用给 Column 加边框Column 使用 verticalArrangement 定位子项位置Column 使用 horizontalAlignment 定位子组件位置Column 设置了大小,可使用Modifier.align修饰符设置子组件对齐方式 Row 的含义Row 的使用 总结 前言 传统的…...

QT+VS实现Kmeans++
1、Kmeans的原理如下: (1)首先选取样本中任一数据点作为第一个聚类中心; (2)计算样本每一个数据点至现所有聚类中心的最近距离,并记录下来; (3)逐一挑选所…...

上位机图像处理和嵌入式模块部署(算法库的编写)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 作为图像处理的engineer来说,有时候我们需要提供上位机软件,有时候需要提供下位机程序,还有一种情况࿰…...
LeetCode1504. Count Submatrices With All Ones
文章目录 一、题目二、题解 一、题目 Given an m x n binary matrix mat, return the number of submatrices that have all ones. Example 1: Input: mat [[1,0,1],[1,1,0],[1,1,0]] Output: 13 Explanation: There are 6 rectangles of side 1x1. There are 2 rectangles…...
(每日持续更新)信息系统项目管理(第四版)(高级项目管理)考试重点整理第8章 项目整合管理(九)
博主2023年11月通过了信息系统项目管理的考试,考试过程中发现考试的内容全部是教材中的内容,非常符合我学习的思路,因此博主想通过该平台把自己学习过程中的经验和教材博主认为重要的知识点分享给大家,希望更多的人能够通过考试&a…...

帕金森早期诊断准确率提高至 90.2%,深圳先进院联合中山一院提出 GSP-GCNs 模型
中山大学附属第一医院&中科大先进院等研究团队,提出了一种深度学习模型——图信号处理-图卷积网络 (GSP-GCNs),利用从涉及声调调节的特定任务中获得的事件相关脑电图数据来诊断帕金森病。 震颤、动作迟缓、表情僵硬……提起帕金森病,多数…...

java servlet果蔬产业监管系统Myeclipse开发mysql数据库web结构java编程计算机网页项目
一、源码特点 java Web果蔬产业监管系统是一套完善的java web信息管理系统 serlvetdaobean mvc 模式开发 ,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主 要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...