当前位置: 首页 > news >正文

【算法】Partitioning the Array(数论)

题目

Allen has an array a1,a2,…,an. For every positive integer k that is a divisor of n, Allen does the following:

  • He partitions the array into n/k disjoint subarrays of length k. In other words, he partitions the array into the following subarrays:

    [a1,a2,…,ak],[ak+1,ak+2,…,a2k],…,[an−k+1,an−k+2,…,an]

  • Allen earns one point if there exists some positive integer m (m≥2) such that if he replaces every element in the array with its remainder when divided by m, then all subarrays will be identical.

Help Allen find the number of points he will earn.

================================================================

Allen 有一个数组 a1,a2,…,an。对于每一个能被 n 整除的正整数 k,艾伦都会做如下运算:

  • 他将数组划分为长度为 k 的 n/k 个互不相交的子数组:

    [a1,a2,…,ak],[ak+1,ak+2,…,a2k],…,[an−k+1,an−k+2,…,an]

  • 如果存在某个正整数 m (m≥2),使得如果他把数组中的每个元素都替换成除以 m 后的余数,那么所有的子数组都是相同的,Allen 就可以得到一分。

帮助艾伦找出他将获得的分数。

Input

Each test consists of multiple test cases. The first line contains a single integer t (1≤t≤104) — the number of test cases. The description of the test cases follows.

The first line of each test case contains a single integer n (1≤n≤2⋅10^5) — the length of the array a.

The second line of each test case contains n integers a1,a2,…,an (1≤ai≤n) — the elements of the array a.

It is guaranteed that the sum of n over all test cases does not exceed 2⋅105.

输入

每个测试由多个测试用例组成。第一行包含一个整数 t(1≤t≤104)–测试用例数。测试用例说明如下。

每个测试用例的第一行包含一个整数 n(1≤n≤2⋅105)–数组 a 的长度。

每个测试用例的第二行包含 n 个整数 a1,a2,…,an(1≤ai≤n)–数组 a 的元素。

保证所有测试用例中 n 的总和不超过 2⋅10^5。

Output

For each test case, output a single integer — the number of points Allen will earn.

输出

对于每个测试用例,输出一个整数 - 艾伦将获得的分数。

思路

本题用到一个概念:如果m为|x-y|的因数,则x % m == y % m.
将数组划分为长度相等的 i 段,将所有的数全部模m之后,所有数组相同。例如当m = 1的时候每个数组中的数均为0,(当然题目中要求m != 0,这里只是做个假设)可以得到一分。
若 n % k == 0,将数组分成了k段
则原数组中m 必须为 abs(h[ i ] - h[ i + k])的因数.

在这里插入图片描述

代码

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5 + 10;
int n;
int h[N];int gcd(int a, int b)  // 欧几里得算法
{return b ? gcd(b, a % b) : a;
}void solve()
{cin >> n;int ans = 0;for(int i = 1; i <= n; i ++) cin >> h[i];for(int i = 1; i <= n; i ++){if(n % i == 0){int m = 0;for(int k = 1; k + i <= n; k ++){m = gcd(m,abs(h[i + k] - h[k]));}ans += (m != 1);}}cout << ans << endl;
}int main()
{int t;cin >> t;while(t --)solve();return 0;
}

题目来自:Partitioning the Array

相关文章:

【算法】Partitioning the Array(数论)

题目 Allen has an array a1,a2,…,an. For every positive integer k that is a divisor of n, Allen does the following: He partitions the array into n/k disjoint subarrays of length k. In other words, he partitions the array into the following subarrays: [a1,…...

ASP.NET Core 7 Web 使用Session

ASP.NET Core 好像不能像20年前那样直接使用Session函数&#xff0c;我使用如下方法 1、在NuGet安装以下2个包 2、在Program.cs注册 //注册Session builder.Services.AddSession(options > {options.IdleTimeout TimeSpan.FromMinutes(60);options.Cookie.HttpOnly fals…...

(1)SpringBoot学习——芋道源码

Spring Boot 的快速入门 一.、概述 使用 Spring Boot 可以很容易地创建出能直接运行的独立的、生产级别的基于 Spring 的应用。 二、快速入门 2.1 创建 Maven 项目 打开 IDEA&#xff0c;点击菜单 File -> New -> Project.来创建项目选择 Maven 类型&#xff0c;点击「…...

宏景eHR FrCodeAddTreeServlet SQL注入漏洞复现

前言 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该文章仅供学习用途使用。 一、产…...

STM32——I2C

通信协议见&#xff08;STM32——SPI&#xff09; 一、I2C协议 1.1 I2C协议介绍&#xff1b; I2C是&#xff08;Inter IC Bus&#xff09;是由Philips公司开发的一种通用数据总线&#xff1b; 有多根通信线&#xff1b; 一根SDA&#xff08;串行通信线&#xff09;&#xf…...

笔记本从零安装ubuntu server系统+环境配置

文章目录 前言相关链接ubuntu Server 安装教程屏幕自动息屏关上盖子不休眠MobaXterm外网SSH内网穿透IPV6远程 为什么我要笔记本装Linux为什么要换ubuntu Server版能否连接wifi之后Linux 配置清单总结 前言 之前装了个ubuntu desktop 版&#xff0c;发现没有命令行&#xff0c;…...

SQL 快速参考手册

SQL 语句语法AND / ORSELECT column_name(s) FROM table_name WHERE condition AND|OR conditionALTER TABLEALTER TABLE table_name ADD column_name datatype 或者&#xff1a; ALTER TABLE table_name DROP COLUMN column_name AS (alias)SELECT column_name AS column_alia…...

Linux/Windows系统无法git clone解决办法

一、Windows 1. 查找github和githubusercontent的IP地址 IP Tracer & Tracker - IP Address Lookup Made EasyIP Lookup Made Easy Using The Best IP Tracker – Trace An IP, Map The Location & Get Accurate Results When Using The Best IP Finderhttps://www.i…...

【算法与数据结构】198、213、337LeetCode打家劫舍I, II, III

文章目录 一、198、打家劫舍二、213、打家劫舍 II三、337、打家劫舍III三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、198、打家劫舍 思路分析&#xff1a;打家劫舍是动态规划的的经典题目。本题的难点在于递归公式…...

React、React Router、JSX 简单入门快速上手

React、React Router、JSX 简单入门快速上手 介绍特点 JSX使用js表达式渲染列表样式控制注意事项 入门脚手架创建react项目安装目录介绍入口文件解析 组件解析介绍函数式组件类组件 事件绑定注意点定义使用事件对象事件处理函数接收额外参数 组件状态状态的定义使用 组件通信父…...

从 0 开始搭建 React 框架

webpack 配置 不再赘述&#xff0c;可参考前三个文章&#xff08;wenpack5 基本使用 1 - 3&#xff09; 使用 react 安装 react、react-dom、babel/preset-react yarn add react react-dom babel/preset-react<!DOCTYPE html> <html lang"en"> <h…...

网站地址怎么改成HTTPS?

现在&#xff0c;所有类型的网站都需要通过 HTTPS 协议进行安全连接&#xff0c;而实现这一目标的唯一方法是使用 SSL 证书。如果您不将 HTTP 转换为 HTTPS&#xff0c;浏览器和应用程序会将您网站的连接标记为不安全。 但用户询问如何将我的网站从 HTTP 更改为 HTTPS。在此页…...

Blender教程(基础)-面的细分与删除、挤出选区-07

一、Blender之面的细分 新建一个立方体&#xff0c;在编辑模式下、选中一个面。 在选中的面上单击右键弹出细分选项&#xff0c;选择细分。 在选中细分后、会默认细分1次。修改细分次数在左下角 二、Blender之面的删除 选择中需要操作的面&#xff0c;在英文状态下按X键弹…...

QT自制软键盘 最完美、最简单、支持中文输入(二)

目录 一、前言 二、本自制虚拟键盘特点 三、中文输入原理 四、组合键输入 五、键盘事件模拟 六、界面 七、代码 7.1 frmKeyBoard 头文件代码 7.2 frmKeyBoard 源文件代码 八、使用示例 九、效果 十、结语 一、前言 由于系统自带虚拟键盘不一定好用&#xff0c;也不一…...

SpringCloud_学习笔记_1

SpringCloud01 1.认识微服务 随着互联网行业的发展&#xff0c;对服务的要求也越来越高&#xff0c;服务架构也从单体架构逐渐演变为现在流行的微服务架构。这些架构之间有怎样的差别呢&#xff1f; 1.0.学习目标 了解微服务架构的优缺点 1.1.单体架构 单体架构&#xff…...

容器算法迭代器初识

#include<iostream> using namespace std; #include<vector> //vetor容器存放内置数据类型 void test01() {//创建了一个vector容器&#xff0c;数组 vector<int> v;//向容器中插入数据v.push_back (10);//尾插 v.push_back (20);v.push_back (30);v.push_ba…...

瑞_力扣LeetCode_二叉搜索树相关题

文章目录 说明题目 450. 删除二叉搜索树中的节点题解递归实现 题目 701. 二叉搜索树中的插入操作题解递归实现 题目 700. 二叉搜索树中的搜索题解递归实现 题目 98. 验证二叉搜索树题解中序遍历非递归实现中序遍历递归实现上下限递归 题目 938. 二叉搜索树的范围和题解中序遍历…...

python爬虫爬取网站

流程&#xff1a; 1.指定url(获取网页的内容) 爬虫会向指定的URL发送HTTP请求&#xff0c;获取网页的HTML代码&#xff0c;然后解析HTML代码&#xff0c;提取出需要的信息&#xff0c;如文本、图片、链接等。爬虫请求URL的过程中&#xff0c;还可以设置请求头、请求参数、请求…...

c# Get方式调用WebAPI,WebService等接口

/// <summary> /// 利用WebRequest/WebResponse进行WebService调用的类 /// </summary> public class WebServiceHelper {//<webServices>// <protocols>// <add name"HttpGet"/>// <add name"HttpPost"/>// …...

银行数据仓库体系实践(11)--数据仓库开发管理系统及开发流程

数据仓库管理着整个银行或公司的数据&#xff0c;数据结构复杂&#xff0c;数据量庞大&#xff0c;任何一个数据字段的变化或错误都会引起数据错误&#xff0c;影响数据应用&#xff0c;同时业务的发展也带来系统不断升级&#xff0c;数据需求的不断增加&#xff0c;数据仓库需…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...