当前位置: 首页 > news >正文

【数据结构 08】红黑树

一、概述

红黑树,是一种二叉搜索树,每一个节点上有一个存储位表示节点的颜色,可以是Red或Black。

通过对任何一条从根到叶子的路径上各个节点着色方式的限制,红黑树确保没有一条路径会比其他路径长上两倍,因而是接进平衡的。

红黑树性质:

  • 根节点是黑色
  • 红节点的两个孩子一定是黑色的;黑节点的两个孩子不一定是红色的。没有连续的红节点
  • 对于每个节点,从该节点到其后所有后代叶节点的简单路径上,均包含相同数目的黑节点
  • 每个叶子节点都是黑色的(NIL空节点)

二、算法

红黑树在设计的时候,插入策略与AVL树一样,只是插入之后的调整策略与AVL不同(旋转策略是一样的,但是红黑树需要考虑变色且无需再考虑平衡因子)

只看遍历的时间复杂度的话,AVL树的时间复杂度是低于红黑树的,因为AVL树的时间复杂度是无限接近于O(\log_2 n),而红黑树的时间复杂度是O(\log_2 n) ~2 * O(\log_2 n),但这在系统层面的时间损失很小。

从调整策略的角度,红黑树的调整次数与旋转次数都远低于AVL树。所以综合来看,红黑树的性能是优于AVL树的,map和set的底层封装的也正是红黑树。

三、调整策略

红黑树的根节点一定是黑色,新插入的节点默认为是红色。

当新插入一个红色节点cur时,先观察cur的父节点parent,如果父节点是黑色,则无需调整;如果父节点也是红节点,那么再观察cur节点的叔叔节点uncle,根据uncle节点的情况进行调整。

红黑树调整策略的核心思路:不能出现连续的红色节点,每条路径的黑色节点数量一样

调整策略分为三种情况:

  • 情况1:父节点parent和叔叔节点uncle都是红色,此时只需变色调整,不需旋转,并向上调整
  • 情况2:父节点parent为红色,叔叔节点不存在或为黑色,cur节点和parent节点都同为左节点或同为右节点,此时需要左单旋或者右单旋,无需向上调整
  • 情况3:父节点parent为红色,叔叔节点不存在或为黑色,cur节点为左节点时parent节点为右节点,或者cur节点为右节点时parent节点为左节点,此时需要左右双旋或者右左双旋,无需向上调整

情况1:parent节点是红色,uncle节点也是红色

调整方法:parent节点与uncle节点变为黑色,祖父节点grandparent节点变为红色,然后将cur变为祖父节点,parent节点依然为cur节点的父节点,向上调整,直到出现parent节点为空,最后再将根节点置为黑色。

如图:

情况1

 

情况1

情况2: 父节点parent为红色,叔叔节点不存在或为黑色,cur节点和parent节点都同为左节点或同为右节点

调整方法:以祖父节点grandparent为轴点进行左单旋或则右单旋,父节点变成黑色,祖父节点变成红色。

如图:

情况2
情况1 情况2 结合调整

情况3:父节点parent为红色,叔叔节点不存在或为黑色,cur节点为左节点时parent节点为右节点,或者cur节点为右节点时parent节点为左节点

调整方法:先以parent节点为轴心进行左单旋或者右单旋,再以grandparent节点为轴心进行与上一步操作相反的单旋,最后将cur节点变成黑色,将grandparent节点变为红色

示例:将数列{ 16, 3, 7, 9, 26, 18, 14, 15, 13, 11 }按顺序插入红黑色中

图1 插入16、3、7
图2 插入9
图3 插入26、18
图4 插入14、15
图5 插入13
图6 插入11

四、RBTree.h

#define _CRT_SECURE_NO_WARNINGS 1#pragma once
#include <iostream>enum Color
{RED,BLACK
};template<class K, class V>
struct RBTreeNode
{std::pair<K, V> kv;RBTreeNode* parent;RBTreeNode* left;RBTreeNode* right;Color col;RBTreeNode(const std::pair<K, V>& x): kv(x), parent(nullptr), left(nullptr), right(nullptr), col(RED){}
};template<class K, class V>
class RBTree
{typedef RBTreeNode<K, V> Node;
public:bool Insert(const std::pair<K, V>& x){if (_root == nullptr){_root = new Node(x);_root->col = BLACK;return true;}// 寻找新节点该插入的位置Node* cur = _root;Node* parent = nullptr;while (cur){parent = cur;if (cur->kv.first > x.first)cur = cur->left;else if (cur->kv.first < x.first)cur = cur->right;elsereturn false;}// 创建新节点cur = new Node(x);cur->parent = parent;if (parent->kv.first > x.first)parent->left = cur;elseparent->right = cur;// 调整颜色while (parent && parent->col == RED){Node* grandpa = parent->parent;if (grandpa->left == parent){Node* uncle = grandpa->right;if (uncle && uncle->col == RED){// 情况1,变色parent->col = uncle->col = BLACK;grandpa->col = RED;cur = grandpa;parent = cur->parent;}else{if (parent->left == cur){// 情况2,右单旋_RotateRight(grandpa);parent->col = BLACK;grandpa->col = RED;}else{// 情况3,左右双旋_RotateLeft(parent);_RotateRight(grandpa);cur->col = BLACK;grandpa->col = RED;}break;}}else{Node* uncle = grandpa->left;if (uncle && uncle->col == RED){// 情况1,变色parent->col = uncle->col = BLACK;grandpa->col = RED;cur = grandpa;parent = cur->parent;}else{if (parent->right == cur){// 情况2,左单旋_RotateLeft(grandpa);parent->col = BLACK;grandpa->col = RED;}else{// 情况3,右左双旋_RotateRight(parent);_RotateLeft(grandpa);cur->col = BLACK;grandpa->col = RED;}break;}}}_root->col = BLACK;return true;}void InOrder(){_InOrder(_root);std::cout << std::endl;}bool IsBalance(){if (_root == nullptr)return true;if (_root->col == RED)return false;// 计算最左路径上的黑节点数量int ref = 0;Node* left = _root;while (left){if (left->col == BLACK)++ref;left = left->left;}return _IsBalance(_root, 0, ref);}private:void _RotateLeft(Node* parent){Node* subR = parent->right;Node* subRL = subR->left;parent->right = subRL;if (subRL)subRL->parent = parent;subR->left = parent;Node* ppNode = parent->parent;parent->parent = subR;if (ppNode == nullptr){_root = subR;subR->parent = nullptr;}else{if (ppNode->left == parent)ppNode->left = subR;elseppNode->right = subR;subR->parent = ppNode;}}void _RotateRight(Node* parent){Node* subL = parent->left;Node* subLR = subL->right;parent->left = subLR;if (subLR)subLR->parent = parent;subL->right = parent;Node* ppNode = parent->parent;parent->parent = subL;if (ppNode == nullptr){_root = subL;subL->parent = nullptr;}else{if (ppNode->left == parent)ppNode->left = subL;elseppNode->right = subL;subL->parent = ppNode;}}void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->left);std::cout << "<" << root->kv.first << "," << root->kv.second << "> ";_InOrder(root->right);}bool _IsBalance(Node* root, int blackNum, int ref){if (root == nullptr){if (blackNum != ref){std::cout << "路径黑色节点数量不相等" << std::endl;return false;}return true;}if (root->col == RED && root->parent->col == RED){std::cout << "路径出现连续红节点" << "<" << root->kv.first << "," << root->kv.second << "> " << std::endl;return false;}if (root->col == BLACK)++blackNum;return _IsBalance(root->left, blackNum, ref)&& _IsBalance(root->right, blackNum, ref);}private:Node* _root = nullptr;
};

五、test.cpp

#define _CRT_SECURE_NO_WARNINGS 1#include "RBTree.h"
#include <ctime>void test1_RBTree()
{int arr[] = { 16, 3, 7, 9, 26, 18, 14, 15, 13, 11 };//int arr[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };RBTree<int, int> t;for (auto& e : arr){t.Insert(std::make_pair(e, e));}t.InOrder();std::cout << std::endl;std::cout << t.IsBalance() << std::endl;
}void test2_RBTree()
{RBTree<int, int> t;for (int i = 0; i < 100000; ++i){int x = rand() % 10000;t.Insert(std::make_pair(x, x));}t.InOrder();std::cout << std::endl;std::cout << t.IsBalance() << std::endl;
}int main()
{srand(time(nullptr));test1_RBTree();//test2_RBTree();return 0;
}

相关文章:

【数据结构 08】红黑树

一、概述 红黑树&#xff0c;是一种二叉搜索树&#xff0c;每一个节点上有一个存储位表示节点的颜色&#xff0c;可以是Red或Black。 通过对任何一条从根到叶子的路径上各个节点着色方式的限制&#xff0c;红黑树确保没有一条路径会比其他路径长上两倍&#xff0c;因而是接进…...

【百度Apollo】自动驾驶规划技术:实现安全高效的智能驾驶

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏:《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! ⛳️ 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下…...

《C程序设计》上机实验报告(五)之一维数组二维数组与字符数组

实验内容&#xff1a; 1.运行程序 #include <stdio.h> void main( ) { int i,j,iRow0,iCol0,m; int x[3][4]{{1,11,22,33},{2,28,98,38},{3,85,20,89}}; mx[0][0]; for(i0;i<3;i) for(j0;j<4;j) if (x[i][j]>m) { mx[i][j]; iRowi…...

【BUG】联想Y7000电池电量为0且无法充电解决方案汇总

因为最近火灾很多&#xff0c;所以昨天夜晚睡觉的时候把插线板电源关掉了&#xff0c;电脑也关机了。 各位一定要注意用电安全&#xff0c;网上的那些事情看着真的很难受qvq。 第二天早上起床的时候一看发现电脑直接没电了&#xff0c;插上电源后也是显示 你一定要冲进去啊(ू˃…...

centos7常用命令之安装插件2

centos7安装插件1 7、kibana 【启动kibana,需要调整这个配置文件(/opt/kibana-6.3.0/config/kibana.yml)的一处ip地址,因为每次虚拟机的ip地址可能会有所不同&#xff0c; 同时访问页面地址的ip:5601时,ip地址也对应修改】 1.解压缩包 cd /opt/ tar -xvf kibana-6.3.0-linux-x…...

MATLAB - 仿真单摆的周期性摆动

系列文章目录 前言 本例演示如何使用 Symbolic Math Toolbox™ 模拟单摆的运动。推导摆的运动方程&#xff0c;然后对小角度进行分析求解&#xff0c;对任意角度进行数值求解。 一、步骤 1&#xff1a;推导运动方程 摆是一个遵循微分方程的简单机械系统。摆最初静止在垂直位置…...

Pandas进阶--map映射,分组聚合和透视pivot_table详解

文章目录 1.Pandas的map映射&#xff08;1&#xff09;映射&#xff08;2&#xff09;map充当运算工具 2.数据分组和透视&#xff08;1&#xff09;分组统计 - groupby功能 是pandas最重要的功能&#xff08;2&#xff09;聚合agg 3.透视表pivot_table&#xff08;1&#xff09…...

Visual Studio 和Clion配置Cocos2d-x环境

Visual Studio 和Clion配置Cocos2d-x环境 我就不贴图片的&#xff0c;懒得上传图床。懒。开发环境: ​ 系统: Window11 ​ 编译器: CMake MSVC ​ 开发工具&#xff1a;Clion or Visual Studio ​ 请自行配置好&#xff0c;Python2.7&#xff0c;和Cmake ​ Cocos2d-x下载…...

【百度Apollo】本地调试仿真:加速自动驾驶系统开发的利器

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《linux深造日志》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! ⛳️ 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下…...

ztest中ddof起什么作用

⭐️ statsmodels 中 ztest 基本使用 statsmodels 也是一个强大的统计分析库&#xff0c;提供了丰富的统计模型和检验功能。对于 Z 检验&#xff0c;statsmodels 提供了 ztest 函数。 以下是使用 statsmodels 进行 Z 检验的示例&#xff1a; from statsmodels.stats.weights…...

linux 主机无法联网问题

主机不能联网 一 查看当前ip ping路由 ifconfig wlan0 wlan0: flags4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500inet 192.168.2.78 netmask 255.255.255.0 broadcast 192.168.2.255ping 192.168.2.1查看是否能ping通 二 查看路由表 route -n Destination G…...

2024/1/27 备战蓝桥杯 1-1

目录 求和 0求和 - 蓝桥云课 (lanqiao.cn) 成绩分析 0成绩分析 - 蓝桥云课 (lanqiao.cn) 合法日期 0合法日期 - 蓝桥云课 (lanqiao.cn) 时间加法 0时间加法 - 蓝桥云课 (lanqiao.cn) 扫雷 0扫雷 - 蓝桥云课 (lanqiao.cn) 大写 0大写 - 蓝桥云课 (lanqiao.cn) 标题…...

支持下一代网络IpV6的串口服务器,IpV6串口485接口转网口

和IPv4比较&#xff0c;IPv6有两个极具吸引力的特点&#xff1a;一个是IPv6采用的128位地址格式&#xff0c;而IPv4采用32位的地址格式&#xff0c;因此IPv6使地址空间增大了296&#xff1b;另一个是IPv6物联网数据业务具有更强的支持能力&#xff0c;成为未来物联网的重要协议…...

uniapp H5 实现上拉刷新 以及 下拉加载

uniapp H5 实现上拉刷新 以及 下拉加载 1. 先上图 下拉加载 2. 上代码 <script>import DragableList from "/components/dragable-list/dragable-list.vue";import {FridApi} from /api/warn.jsexport default {data() {return {tableList: [],loadingHi…...

网络工程师必学知识:2、IPv4和IPv6地址划分

网络工程师必学知识&#xff1a;2、IPv4和IPv6地址划分 1.概述&#xff1a;2.IPv4&#xff1a;地址划分&#xff1a;有类划分&#xff0c;无类划分。一、有类划分&#xff1a;分为5类。ABCDE&#xff0c;掩码分别位8、16、24、28、27取值范围&#xff1a;出类别bit不变&#xf…...

Rust - 变量

不管学什么语言好像都得从变量开始&#xff0c;不过只需要懂得大概就可以了。 但在Rust里不先把变量研究明白后面根本无法进行… 变量绑定 变量赋值❌ 变量绑定✔️ Rust中没有“赋值”一说&#xff0c;而是称为绑定。 int a 3; //C中的变量赋值 a 3; //python中的…...

【Linux】压缩脚本、报警脚本

一、压缩搅拌 要求&#xff1a; 写一个脚本&#xff0c;完成如下功能 传递一个参数给脚本&#xff0c;此参数为gzip、bzip2或者xz三者之一&#xff1b; (1) 如果参数1的值为gzip&#xff0c;则使用tar和gzip归档压缩/etc目录至/backups目录中&#xff0c;并命名为/backups/etc…...

用Flask打造一个大模型智能问答WEB网站

目前已经有很多类似GPT的大模型开源,可以提供类似ChatGPT的智能问答功能。我也基于这些开源模型,用Flask来建立一个智能问答网站,可以方便用户建立自己的ChatGPT系统。 这个网站需要提供用户登录功能,对已登录的用户,可以在网站上提出问题,并由大模型处理后返回答案。演…...

学习python第三天

一.数据类型 1.获取数据类型 x 10 print(type(x))""" 输出 <class int> """2.复数类型&#xff08;complex&#xff09;详解 复数&#xff08;Complex&#xff09;是 Python 的内置类型&#xff0c;直接书写即可。换句话说&#xff0c…...

(M)UNITY三段攻击制作

三段攻击逻辑 基本逻辑&#xff1a; 人物点击攻击按钮进入攻击状态&#xff08;bool isAttack&#xff09; 在攻击状态下&#xff0c; 一旦设置的触发器&#xff08;trigger attack&#xff09;被触发&#xff0c;设置的计数器&#xff08;int combo&#xff09;查看目前攻击…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动&#xff08;如演唱会、马拉松赛事、高考中考等&#xff09;期间&#xff0c;城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例&#xff0c;暖城商圈曾因观众集中离场导致周边…...

Go 语言接口详解

Go 语言接口详解 核心概念 接口定义 在 Go 语言中&#xff0c;接口是一种抽象类型&#xff0c;它定义了一组方法的集合&#xff1a; // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的&#xff1a; // 矩形结构体…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

适应性Java用于现代 API:REST、GraphQL 和事件驱动

在快速发展的软件开发领域&#xff0c;REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名&#xff0c;不断适应这些现代范式的需求。随着不断发展的生态系统&#xff0c;Java 在现代 API 方…...