当前位置: 首页 > news >正文

机器学习5-线性回归之损失函数

线性回归中,我们通常使用最小二乘法(Ordinary Least Squares, OLS)来求解损失函数。线性回归的目标是找到一条直线,使得预测值与实际值的平方差最小化。
假设有数据集 \{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(m)}, y^{(m)})\}其中 x^{(i)} 是输入特征,y^{(i)}  是对应的输出。

线性回归的模型假设是:

h_\theta(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n

其中, x_1, x_2, \ldots, x_n 是输入特征, \theta_0, \theta_1, \ldots, \theta_n 是模型的参数。

损失函数(成本函数)表示预测值与实际值之间的差异。对于线性回归,损失函数通常采用均方误差(Mean Squared Error, MSE):

J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2

其中 m 是数据集中的样本数量

求解损失函数的过程就是找到能够使损失函数最小化的模型参数 \theta 。我们通过最小化损失函数来找到最优的参数。这可以通过梯度下降等优化算法来实现。梯度下降的步骤如下:

1. 初始化参数:选择一组初始参数 \theta .

2. 计算梯度:计算损失函数对每个参数的偏导数。

3. 更新参数:使用梯度信息来更新参数,减小损失函数值。

4. 重复步骤2和步骤3:直到收敛或达到预定的迭代次数。

对于线性回归的梯度下降算法,参数的更新规则为:

\theta_j = \theta_j - \alpha \frac{\partial J(\theta)}{\partial \theta_j}

其中 \alpha 是学习率,控制每次参数更新的步长。

在具体的计算中,求解偏导数 \frac{\partial J(\theta)}{\partial \theta_j} 并代入梯度下降公式进行迭代,直到损失函数收敛到最小值。


下面是对损失函数的偏导数计算过程:

均方误差损失函数:

J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2

现在,我们将 J(\theta) 展开并对每个 \theta_j 求偏导数。

首先,计算单个样本的损失:

L(\theta) = \frac{1}{2} (h_\theta(x) - y)^2

然后,对 L(\theta) 对 \theta_j 求偏导数:

\frac{\partial L(\theta)}{\partial \theta_j} = (h_\theta(x) - y) \frac{\partial h_\theta(x)}{\partial \theta_j}

现在,我们对 h_\theta(x) 对 \theta_j 求偏导数:

\frac{\partial h_\theta(x)}{\partial \theta_j} = x_j

将其代入损失函数的偏导数中:

\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}


这就是对于线性回归的均方误差损失函数的偏导数计算过程。在实际应用中,梯度下降算法会根据这些偏导数的信息,迭代更新参数,直至损失函数收敛到最小值。

结论:

以上就是线性回归中求解损失函数的基本过程。这个过程是通过迭代优化算法来找到最优参数,使得模型的预测值与实际值之间的均方误差最小。

相关文章:

机器学习5-线性回归之损失函数

在线性回归中,我们通常使用最小二乘法(Ordinary Least Squares, OLS)来求解损失函数。线性回归的目标是找到一条直线,使得预测值与实际值的平方差最小化。 假设有数据集 其中 是输入特征, 是对应的输出。 线性回归的…...

vulhub中Adminer ElasticSearch 和 ClickHouse 错误页面SSRF漏洞复现(CVE-2021-21311)

Adminer是一个PHP编写的开源数据库管理工具,支持MySQL、MariaDB、PostgreSQL、SQLite、MS SQL、Oracle、Elasticsearch、MongoDB等数据库。 在其4.0.0到4.7.9版本之间,连接 ElasticSearch 和 ClickHouse 数据库时存在一处服务端请求伪造漏洞&#xff08…...

浅谈Zookeeper及windows下详细安装步骤

1. Zookeeper介绍 1.1 分布式系统面临的问题 分布式系统是一个硬件或软件组件分布在不同的网络计算机上,彼此之间仅仅通过消息传递进行通信和协调的系统。 面临的问题:系统每个节点之间信息同步及共享 以一个小团队为例,面临的问题 通过网络进行信息…...

vite, vue3, vue-router, vuex, ES6学习日记

学习使用vitevue3的所遇问题总结&#xff08;2024年2月1日&#xff09; 组件中使用<script>标签忘记加 setup 这会导致Navbar 没有暴露出来&#xff0c;导致使用不了&#xff0c;出现以下报错 这是因为&#xff0c;如果不用setup&#xff0c;就得使用 export default…...

25考研|660/880/1000/1800全年带刷计划

作为一个参加过两次研究生考试的老学姐&#xff0c;我觉得考研数学的难度完全取决于你自己 我自己就是一个很好的例子 21年数学题目是公认的简单&#xff0c;那一年考130的很多&#xff0c;但是我那一年只考了87分。但是22年又都说是有史以来最难的一年&#xff0c;和20年的难度…...

Mybatis基础教程及使用细节

本篇主要对Mybatis基础使用进行总结&#xff0c;包括Mybatis的基础操作&#xff0c;使用注解进行增删改查的练习&#xff1b;详细介绍xml映射文件配置过程并且使用xml映射文件进行动态sql语句进行条件查询&#xff1b;为了简化java开发提高效率&#xff0c;介绍一下依赖&#x…...

10 分钟在K8s 中部署轻量级日志系统 Loki

转载至我的博客 https://www.infrastack.cn &#xff0c;公众号&#xff1a;架构成长指南 Loki 是什么&#xff1f; Loki是由Grafana Labs开源的一个水平可扩展、高可用性&#xff0c;多租户的日志聚合系统的日志聚合系统。它的设计初衷是为了解决在大规模分布式系统中&#x…...

图像处理python基础

array 读取图片 tensor 模型预测 一般过程&#xff1a;读取数据np->tensor->model->result->np->画图 shape确保图像输入输出尺寸正确 读取图片 将在GPU上运行的tensor类型转变成在CPU上运行的np类型 三类计算机视觉任务的输入&#xff1a; 分类&#xff1…...

基于WordPress开发微信小程序2:决定开发一个wordpress主题

上一篇&#xff1a;基于WordPress开发微信小程序1&#xff1a;搭建Wordpress-CSDN博客 很快发现一个问题&#xff0c;如果使用别人的主题模板&#xff0c;多多少少存在麻烦&#xff0c;所以一咬牙&#xff0c;决定自己开发一个主题模板&#xff0c;并且开源在gitee上&#xff…...

[Python] 什么是网格搜索以及scikit-learn中GridSearch类的介绍和使用案例?

什么是网格搜索&#xff1f; 网格搜索是一种参数调优的方法&#xff0c;它可以帮助找到最佳的模型参数。在网格搜索中&#xff0c;我们先指定参数的候选值范围&#xff0c;然后枚举所有可能的参数组合&#xff0c;计算每个模型的性能指标&#xff08;比如准确率、精确率等&…...

Linux-正则表达式

1.正则表达式的定义&#xff1a; 正则表达式通常用于判断语句中&#xff0c;使用字符串描述、匹配一系列符合某个规则的字符串。 正则表达式是由普通字符与元字符组成。 普通字符包括小写字母、数字、标点符号及一些其他符号。元字符是指在正则表达式中具有特殊意义的专用字符&…...

Java基础学习:System类和Static方法的实际使用

一、System类 1.在程序开发中&#xff0c;我们需要对这个运行的结果进行检验跟我们预判的结果是否一致&#xff0c;就会用到打印结果在控制台中显示出来使用到了System类。System类定义了一些和系统相关的属性和方法&#xff0c;它的属性和方法都是属于静态的&#xff0c;想使用…...

线性代数------矩阵的运算和逆矩阵

矩阵VS行列式 矩阵是一个数表&#xff0c;而行列式是一个具体的数&#xff1b; 矩阵是使用大写字母表示&#xff0c;行列式是使用类似绝对值的两个竖杠&#xff1b; 矩阵的行数可以不等于列数&#xff0c;但是行列式的行数等于列数&#xff1b; 1.矩阵的数乘就是矩阵的每个…...

Flutter 开发3:创建第一个Flutter应用

Step 1: 安装Flutter 1.1 下载Flutter SDK 首先&#xff0c;你需要访问Flutter官方网站下载最新的Flutter SDK。选择适合你操作系统的安装包。 $ cd ~/development $ unzip ~/Downloads/flutter_macos_2.2.3-stable.zip1.2 更新环境变量 接下来&#xff0c;你需要将Flutter…...

Linux中断下半部分:软中断,tasklet和工作队列

为什么要有下半部分 中断会打断其他程序&#xff0c;为了打断其他程序时间短&#xff0c;就需要中断处理程序快。执行中断处理程序后&#xff0c;相同中断不会触发&#xff0c;甚至所有中断都不能触发&#xff08;设置IRQF_DISABLED&#xff0c;其他硬件与操作系统无法通信)中…...

Flink CEP实现10秒内连续登录失败用户分析

1、什么是CEP&#xff1f; Flink CEP即 Flink Complex Event Processing&#xff0c;是基于DataStream流式数据提供的一套复杂事件处理编程模型。你可以把他理解为基于无界流的一套正则匹配模型&#xff0c;即对于无界流中的各种数据(称为事件)&#xff0c;提供一种组合匹配的…...

QSqlRelationalTableModel 关系表格模型

一、 1.1 QSqlRelationalTableModel继承自QSqlTableModel&#xff0c;并且对其进行了扩展&#xff0c;提供了对外键的支持。一个外键就是一个表中的一个字段 和 其他表中的主键字段之间的一对一的映射。例如&#xff0c;“studInfo”表中的departID字段对应的是“departments…...

JS和CSS实现的原生轮播图

JSCSS实现滑动轮播图 使用JS加CSS来实现的幻灯片&#xff0c;主要使用的是CSS的transform属性中的translate来实现&#xff0c;适合与用户交互的轮播图&#xff0c;展现轮播图的数量&#xff0c;用户可自由进行选择。 <!DOCTYPE html> <html lang"en">&…...

【微服务】skywalking自定义链路追踪与日志采集

目录 一、前言 二、自定义链路追踪简介 2.1 自定义链路追踪应用场景 2.2 链路追踪几个关键概念 三、skywalking 自定义链路追踪实现 3.1 环境准备 3.2 集成过程 3.2.1 导入核心依赖 3.2.2 几个常用注解 3.2.3 方法集成 3.2.4 上报追踪信息 四、skywalking 自定义日志…...

MYSQL基础问题

一&#xff0e;DBMS 是什么 DBMS&#xff08;Database Management System&#xff09;,数据库管理系统&#xff0c;是一种操纵和管理 数据库的大型软件&#xff0c;用于建立、使用和维护数据库。对数据库进行统一的管理和 控制&#xff0c;以保证数据库的安全性和完整性。 二…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

C++_哈希表

本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、基础概念 1. 哈希核心思想&#xff1a; 哈希函数的作用&#xff1a;通过此函数建立一个Key与存储位置之间的映射关系。理想目标&#xff1a;实现…...

[特殊字符] 手撸 Redis 互斥锁那些坑

&#x1f4d6; 手撸 Redis 互斥锁那些坑 最近搞业务遇到高并发下同一个 key 的互斥操作&#xff0c;想实现分布式环境下的互斥锁。于是私下顺手手撸了个基于 Redis 的简单互斥锁&#xff0c;也顺便跟 Redisson 的 RLock 机制对比了下&#xff0c;记录一波&#xff0c;别踩我踩过…...