IP数据云识别真实IP与虚假流量案例
随着互联网的普及,企业在数字领域面临着越来越复杂的网络威胁。为了保护网站免受虚假流量和恶意攻击的影响,许多企业正在采用IP数据云。本文将结合一个真实案例,深入探讨IP数据云如何成功准确地识别真实用户IP和虚假流量IP,提高网络安全水平。
案例背景
某电商公司近期发现其网站遭受大量虚假流量的攻击,导致网站性能下降、广告点击率异常升高,严重干扰了正常业务运行。为解决这一问题,该公司引入了IP数据云ip风险画像和ip应用场景数据,旨在准确识别出真实用户IP和机器生成的虚假流量IP。
实时IP分析与异常检测:IP数据云通过实时分析网站访问的IP地址,利用多维度的信息对IP进行评估。在该案例中,IP数据云 - 免费IP地址查询 - 全球IP地址定位平台对访问IP进行实时监测,通过检测异常访问模式、频率和地理位置等信息,成功识别出虚假流量的IP地址。
设备指纹技术的应用:企业采用先进的设备指纹技术,对访问的设备进行唯一标识。真实用户通常具有特定的设备指纹,而虚假流量的设备指纹可能表现出异常的模式,能够更准确地识别出机器生成的虚假流量。
IP黑名单与白名单建立:根据对真实用户和虚假流量的准确识别,电商公司建立了IP黑名单和白名单,将虚假流量的IP地址列入黑名单,限制其访问;同时,将真实用户的IP地址加入白名单,保障其正常访问。
结合用户行为分析,对访问者的点击模式、停留时间等行为进行综合评估。通过分析真实用户和虚假流量在网站上的行为差异,提高了对虚假流量的精准识别。

实施效果与优势
1. 减少虚假流量攻击
通过IP数据云的实时分析和设备指纹技术的应用,电商公司成功减少了虚假流量攻击。黑名单的建立和虚假流量的识别使得恶意攻击者难以绕过系统进行非法访问。
2. 提高广告点击准确性
电商公司在识别出真实用户后,且结合ip归属地的城市级数据能够更准确地统计广告点击率。这不仅提高了广告点击的真实性,也有助于优化广告投放策略,提升ROI。
3. 保护网站性能
减少了虚假流量的干扰,网站的性能得到有效保护。真实用户能够更顺畅地访问网站,提升了用户体验。
4. 建立可信赖的访问环境
通过建立IP黑名单和白名单,电商公司成功建立了一个可信赖的访问环境。真实用户不会受到虚假流量的影响,使得网站的安全性得到提高。
未来,随着恶意攻击手段的不断演变,IP数据云技术将继续发展并增强其识别能力。结合人工智能和机器学习等技术,将进一步提高对虚假流量的智能化辨识。同时,IP数据云有望与其他网络安全工具集成,形成更为全面的防御体系。
相关文章:
IP数据云识别真实IP与虚假流量案例
随着互联网的普及,企业在数字领域面临着越来越复杂的网络威胁。为了保护网站免受虚假流量和恶意攻击的影响,许多企业正在采用IP数据云。本文将结合一个真实案例,深入探讨IP数据云如何成功准确地识别真实用户IP和虚假流量IP,提高网…...
signalR+websocket:实现消息实时通讯——技能提升
signalR 解决步骤1:npm install microsoft/signalr6.0.6 安装指定版本的microsoft/signalr,我这边安装的版本是6.0.6 解决步骤2:引入import * as signalR from microsoft/signalr; import * as signalR from microsoft/signalr; 下面第三…...
机器学习入门-----sklearn
机器学习基础了解 概念 机器学习是人工智能的一个实现途径 深度学习是机器学习的一个方法发展而来 定义:从数据中自动分析获得模型,并利用模型对特征数据【数据集:特征值+目标值构成】进行预测 算法 数据集的目标值是类别的话叫做分类问题;目标值是连续的数值的话叫做回…...
双非本科准备秋招(15.3)—— 力扣二叉树
今天学了二叉树结点表示法,建树代码如下。 public class TreeNode {public int val;public TreeNode left;public TreeNode right;public TreeNode(int val) {this.val val;}public TreeNode(int val, TreeNode left, TreeNode right) {this.val val;this.left …...
20240203在WIN10下使用GTX1080配置stable-diffusion-webui.git不支持float16精度出错的处理
20240203在WIN10下使用GTX1080配置stable-diffusion-webui.git不支持float16精度出错的处理 2024/2/3 21:23 缘起:最近学习stable-diffusion-webui.git,在Ubuntu20.04.6下配置SD成功。 不搞精简版本:Miniconda了。直接上Anacoda! …...
京东微前端框架MicroApp简介
一、MicroApp 1.1 MicroApp简介 MicroApp是由京东前端团队推出的一款微前端框架,它从组件化的思维,基于类WebComponent进行微前端的渲染,旨在降低上手难度、提升工作效率。MicroApp无关技术栈,也不和业务绑定,可以用于任何前端框架。 官网链接:https://micro-zoe.gith…...
SpringBoot 使用定时任务(SpringTask)
Spring3.0以后自带的task,可以将它看成一个轻量级的Quartz,而且使用起来比Quartz简单许多。 使用步骤: 1.导入坐标 在spring-boot-starter-web坐标中,就包含了SpringTask,所以一般的Web项目都包含了。 <depende…...
国标GB/T 28181详解:设备视音频文件检索消息流程
目 录 一、设备视音频文件检索 二、设备视音频文件检索的基本要求 三、命令流程 1、流程图 2、流程描述 四、协议接口 五、产品说明 六、设备视音频文件检索的作用 七、参考 在国标GBT28181中,定义了设备视音频文件检索消息的流程,主…...
openssl自签名CA根证书、服务端和客户端证书生成并模拟单向/双向证书验证
1. 生成根证书 1.1 生成CA证书私钥 openssl genrsa -aes256 -out ca.key 2048 1.2 取消密钥的密码保护 openssl rsa -in ca.key -out ca.key 1.3 生成根证书签发申请文件(csr文件) openssl req -new -sha256 -key ca.key -out ca.csr -subj "/CCN/STFJ/LXM/ONONE/OU…...
NIO Selector简介
1.Selector和Channel关系 Selector一般称为选择器,也叫多路复用器,NIO的核心组件,用于检查一个或多个Channel的状态是否处于可读、可写的状态。 2.可选择通道 (1)不是所有的channel都能被selector复用,…...
2023-12蓝桥杯STEMA考试 C++ 中高级试卷解析
蓝桥杯STEMA考试 C++ 中高级试卷(12月) 一、选择题 第一题 定义字符串 string a = "Hello C++",下列选项可以获取到字符 C 的是(B)。 A、a[7] B、a[6] C、a[5] D、a[4] 第二题 下列选项中数值与其它项不同的是( C)。 A、 B、 C、 D、 第三题 定义变量 int i =…...
设计模式——2_1 命令(Command)
文章目录 定义图纸一个例子:空调和他的遥控器只有控制面板的空调遥控器可以撤销的操作 碎碎念命令和Runnable命令和事务 定义 把请求封装成一个对象,从而使你可以用不同的请求对客户进行参数化,对请求排队或记录请求日志,以及支持…...
HP数组面试题
PHP数组面试题 问题: 如何创建一个空数组和一个带有初始值的数组? 答案: 创建空数组:可以使用array()函数或空数组语法[]来创建一个空数组,例如$arr array();或$arr [];。创建带有初始值的数组:可以在创建…...
机器学习5-线性回归之损失函数
在线性回归中,我们通常使用最小二乘法(Ordinary Least Squares, OLS)来求解损失函数。线性回归的目标是找到一条直线,使得预测值与实际值的平方差最小化。 假设有数据集 其中 是输入特征, 是对应的输出。 线性回归的…...
vulhub中Adminer ElasticSearch 和 ClickHouse 错误页面SSRF漏洞复现(CVE-2021-21311)
Adminer是一个PHP编写的开源数据库管理工具,支持MySQL、MariaDB、PostgreSQL、SQLite、MS SQL、Oracle、Elasticsearch、MongoDB等数据库。 在其4.0.0到4.7.9版本之间,连接 ElasticSearch 和 ClickHouse 数据库时存在一处服务端请求伪造漏洞(…...
浅谈Zookeeper及windows下详细安装步骤
1. Zookeeper介绍 1.1 分布式系统面临的问题 分布式系统是一个硬件或软件组件分布在不同的网络计算机上,彼此之间仅仅通过消息传递进行通信和协调的系统。 面临的问题:系统每个节点之间信息同步及共享 以一个小团队为例,面临的问题 通过网络进行信息…...
vite, vue3, vue-router, vuex, ES6学习日记
学习使用vitevue3的所遇问题总结(2024年2月1日) 组件中使用<script>标签忘记加 setup 这会导致Navbar 没有暴露出来,导致使用不了,出现以下报错 这是因为,如果不用setup,就得使用 export default…...
25考研|660/880/1000/1800全年带刷计划
作为一个参加过两次研究生考试的老学姐,我觉得考研数学的难度完全取决于你自己 我自己就是一个很好的例子 21年数学题目是公认的简单,那一年考130的很多,但是我那一年只考了87分。但是22年又都说是有史以来最难的一年,和20年的难度…...
Mybatis基础教程及使用细节
本篇主要对Mybatis基础使用进行总结,包括Mybatis的基础操作,使用注解进行增删改查的练习;详细介绍xml映射文件配置过程并且使用xml映射文件进行动态sql语句进行条件查询;为了简化java开发提高效率,介绍一下依赖&#x…...
10 分钟在K8s 中部署轻量级日志系统 Loki
转载至我的博客 https://www.infrastack.cn ,公众号:架构成长指南 Loki 是什么? Loki是由Grafana Labs开源的一个水平可扩展、高可用性,多租户的日志聚合系统的日志聚合系统。它的设计初衷是为了解决在大规模分布式系统中&#x…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
