当前位置: 首页 > news >正文

基于YOLOv8的暗光低光环境下(ExDark数据集)检测,加入多种优化方式---DCNv4结合SPPF ,助力自动驾驶(一)

💡💡💡本文主要内容:详细介绍了暗光低光数据集检测整个过程,从数据集到训练模型到结果可视化分析,以及如何优化提升检测性能。

💡💡💡加入 DCNv4结合SPPF mAP@0.5由原始的0.682提升至0.694

 1.暗光低光数据集ExDark介绍

       低光数据集使用ExDark,该数据集是一个专门在低光照环境下拍摄出针对低光目标检测的数据集,包括从极低光环境到暮光环境等10种不同光照条件下的图片,包含图片训练集5891张,测试集1472张,12个类别。

1.Bicycle 2.Boat 3.Bottle 4.Bus 5.Car 6.Cat 7.Chair 8.Cup 9.Dog 10.Motorbike 11.People 12.Table

 

细节图:

 

2.基于YOLOv8的暗光低光检测

2.1 修改ExDark_yolo.yaml

path: ./data/ExDark_yolo/  # dataset root dir
train: images/train  # train images (relative to 'path') 1411 images
val: images/val  # val images (relative to 'path') 458 images
#test: images/test  # test images (optional) 937 imagesnames:0: Bicycle1: Boat2: Bottle3: Bus4: Car5: Cat6: Chair7: Cup8: Dog9: Motorbike10: People11: Table

2.2 开启训练 

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/yolov8.yaml')model.train(data='data/ExDark_yolo/ExDark_yolo.yaml',cache=False,imgsz=640,epochs=200,batch=16,close_mosaic=10,workers=0,device='0',optimizer='SGD', # using SGDproject='runs/train',name='exp',)

3.结果可视化分析 

YOLOv8 summary: 225 layers, 3012500 parameters, 0 gradients, 8.2 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 24/24 [00:25<00:00,  1.05s/it]all        737       2404      0.743      0.609      0.682      0.427Bicycle        737        129      0.769      0.697      0.764      0.498Boat        737        143       0.69       0.56      0.649      0.349Bottle        737        174      0.761      0.587      0.652      0.383Bus        737         62      0.854      0.742      0.808       0.64Car        737        311      0.789      0.672      0.761        0.5Cat        737         95      0.783      0.568      0.661      0.406Chair        737        232      0.725      0.513      0.609      0.363Cup        737        181      0.725       0.53      0.609      0.375Dog        737         94      0.634      0.617      0.628      0.421Motorbike        737         91      0.766      0.692       0.78      0.491People        737        744      0.789      0.603      0.711      0.398Table        737        148      0.637       0.52      0.553      0.296

F1_curve.png:F1分数与置信度(x轴)之间的关系。F1分数是分类的一个衡量标准,是精确率和召回率的调和平均函数,介于0,1之间。越大越好。

TP:真实为真,预测为真;

FN:真实为真,预测为假;

FP:真实为假,预测为真;

TN:真实为假,预测为假;

精确率(precision)=TP/(TP+FP)

召回率(Recall)=TP/(TP+FN)

F1=2*(精确率*召回率)/(精确率+召回率)

 

PR_curve.png :PR曲线中的P代表的是precision(精准率)R代表的是recall(召回率),其代表的是精准率与召回率的关系。 

R_curve.png :召回率与置信度之间关系

results.png

 mAP_0.5:0.95表示从0.5到0.95以0.05的步长上的平均mAP.

 预测结果:

4.如何优化模型 

4.1 DCNv4结合SPPF

YOLOv8全网首发:新一代高效可形变卷积DCNv4如何做二次创新?高效结合SPPF-CSDN博客

论文: https://arxiv.org/pdf/2401.06197.pdf

摘要:我们介绍了可变形卷积v4 (DCNv4),这是一种高效的算子,专为广泛的视觉应用而设计。DCNv4通过两个关键增强解决了其前身DCNv3的局限性:去除空间聚合中的softmax归一化,增强空间聚合的动态性和表现力;优化内存访问以最小化冗余操作以提高速度。与DCNv3相比,这些改进显著加快了收敛速度,并大幅提高了处理速度,其中DCNv4的转发速度是DCNv3的三倍以上。DCNv4在各种任务中表现出卓越的性能,包括图像分类、实例和语义分割,尤其是图像生成。当在潜在扩散模型中与U-Net等生成模型集成时,DCNv4的性能优于其基线,强调了其增强生成模型的可能性。在实际应用中,将InternImage模型中的DCNv3替换为DCNv4来创建FlashInternImage,无需进一步修改即可使速度提高80%,并进一步提高性能。DCNv4在速度和效率方面的进步,以及它在不同视觉任务中的强大性能,显示了它作为未来视觉模型基础构建块的潜力。

图1所示。(a)我们以DCNv3为基准显示相对运行时间。DCNv4比DCNv3有明显的加速,并且超过了其他常见的视觉算子。(b)在相同的网络架构下,DCNv4收敛速度快于其他视觉算子,而DCNv3在初始训练阶段落后于视觉算子。

4.2 对应yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPss: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPsm: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPsl: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPsx: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs# YOLOv8.0n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2- [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4- [-1, 3, C2f, [128, True]]- [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8- [-1, 6, C2f, [256, True]]- [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16- [-1, 6, C2f, [512, True]]- [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32- [-1, 3, C2f, [1024, True]]- [-1, 1, DCNv4_SPPF, [1024, 5]]  # 9# YOLOv8.0n head
head:- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 6], 1, Concat, [1]]  # cat backbone P4- [-1, 3, C2f, [512]]  # 12- [-1, 1, nn.Upsample, [None, 2, 'nearest']]- [[-1, 4], 1, Concat, [1]]  # cat backbone P3- [-1, 3, C2f, [256]]  # 15 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 12], 1, Concat, [1]]  # cat head P4- [-1, 3, C2f, [512]]  # 18 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 9], 1, Concat, [1]]  # cat head P5- [-1, 3, C2f, [1024]]  # 21 (P5/32-large)- [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.3 实验结果分析

mAP@0.5由原始的0.682提升至0.694

YOLOv8_DCNv4_SPPF summary: 238 layers, 4867508 parameters, 0 gradients, 9.7 GFLOPsClass     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 24/24 [00:23<00:00,  1.02it/s]all        737       2404      0.786      0.587      0.694      0.436Bicycle        737        129      0.802      0.659      0.752      0.487Boat        737        143      0.779      0.617      0.676      0.361Bottle        737        174      0.799      0.603       0.66      0.386Bus        737         62      0.856      0.726      0.819      0.654Car        737        311      0.849       0.64      0.764      0.514Cat        737         95      0.757      0.589      0.696      0.436Chair        737        232      0.792      0.526      0.638      0.366Cup        737        181      0.776      0.499      0.625      0.391Dog        737         94      0.689      0.585      0.673      0.444Motorbike        737         91      0.806      0.659      0.806        0.5People        737        744      0.828      0.549      0.689       0.39Table        737        148      0.701      0.395      0.536      0.303

5.系列篇

相关文章:

基于YOLOv8的暗光低光环境下(ExDark数据集)检测,加入多种优化方式---DCNv4结合SPPF ,助力自动驾驶(一)

&#x1f4a1;&#x1f4a1;&#x1f4a1;本文主要内容:详细介绍了暗光低光数据集检测整个过程&#xff0c;从数据集到训练模型到结果可视化分析&#xff0c;以及如何优化提升检测性能。 &#x1f4a1;&#x1f4a1;&#x1f4a1;加入 DCNv4结合SPPF mAP0.5由原始的0.682提升至…...

(十三)springboot实战——springboot前后端分离方式项目集成spring securtity安全框架

前言 Spring Security 是一款强大且高度可定制的认证和访问控制框架&#xff0c;它是为了保护基于Spring的应用程序提供安全性支持。Spring Security提供了全面的安全服务&#xff0c;主要针对企业级应用程序的需求。其核心组件主要包含&#xff1a;Authentication&#xff08…...

XCTF:3-1[WriteUP]

从题目中获取文件 使用file命令查看文件类型 修改后缀为.rar后进行解压缩 再次使用file命令查询该文件的类型 再次修改后缀为.pcap或者.pcapng 使用wireshark打开&#xff0c;直接搜索flag字样 在多个数据包里发现了flag.rar、flag.txt等文件 尝试使用http导出文件 有一个fl…...

常用ES技巧二

文章目录 一、Object.entries()和Object.fromEntries()1.1、Object.entries()1.2、Object.fromEntries() 二、Symbol类型和Symbol属性三、WeakMap和WeakSet四、Promise.allSettled()五、BigInt六、Array.of和Array.from七、.at和.flat八、总结九、最后 一、Object.entries()和O…...

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Rating组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之Rating组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Rating组件 提供在给定范围内选择评分的组件。 子组件 无。 接口 Rating(opt…...

Python进阶--爬取下载人生格言(基于格言网的Python3爬虫)

目录 一、此处需要安装第三方库: 二、抓包分析及Python代码 1、打开人生格言网&#xff08;人生格言-人生格言大全_格言网&#xff09;进行抓包分析 2、请求模块的代码 3、抓包分析人生格言界面 4、获取目录页中各种类型的人生格言链接 5、获取下一页的链接 5、获取人生…...

FastAdmin

PHP 推荐链接FastAdmin禁用模板布局后台不需要验证权限的接口配置 推荐链接 链接目录 FastAdmin 禁用模板布局 /** 在application/common/controller/Backend.php里面的 _initialize() 方法里面有// 如果有使用模板布局if ($this->layout) {$this->view->engine-…...

Java设计模式大全:23种常见的设计模式详解(一)

本系列文章简介&#xff1a; 设计模式是在软件开发过程中&#xff0c;经过实践和总结得到的一套解决特定问题的可复用的模板。它是一种在特定情境中经过验证的经验和技巧的集合&#xff0c;可以帮助开发人员设计出高效、可维护、可扩展和可复用的软件系统。设计模式提供了一种在…...

SaperaCamExpert(相机专家)中文使用指南

参考&#xff1a;SaperaCamExpert中文使用指南.PDF 文章目录 软件介绍安装首次打开资源占用率功能主界面布局菜单栏FileViewPre-Processing&#xff1a;预处理 Tools&#xff1a; 快捷键&#xff1a;新建&#xff1b;打开&#xff1b;保存&#xff1b;帮助Device窗体属性树图像…...

ES鉴权设计以及相关探讨

文章目录 1. es的鉴权设计2. es鉴权应用范围3. es鉴权的常用方法3.1 认证体系3.2 x-pack认证3.2.1 开启并配置 X-Pack 的认证与鉴权3.2.2 默认用户和角色3.2.3 创建用户和角色3.2.4 通过用户名和密码访问es 4. 参考文档 鉴权&#xff0c;分别由鉴和权组成 鉴&#xff1a; 表示…...

为什么SpringBoot胖Jar不好

公平地说&#xff0c;我有时会怀念 JavaEE 流行的日子。 当然&#xff0c;当时的情况很复杂&#xff0c;但整个 JavaEE 平台设计合理&#xff0c;符合企业开发的需要。 我可以很轻松地将当时的 JavaEE 应用服务器与现代 Kubernetes 架构进行比较&#xff0c;后者现在也有同样…...

Java学习笔记2024/2/6

练习三&#xff1a;验证码 需求&#xff1a; 定义方法实现随机产生一个5位的验证码 验证码格式&#xff1a; 长度为5 前四位是大写字母或者小写字母 最后一位是数字 package com.angus.comprehensiveExercise; ​ import java.util.Random; ​ public class test3 {publ…...

2024 高级前端面试题之 前端安全模块 「精选篇」

该内容主要整理关于 前端安全模块 的相关面试题&#xff0c;其他内容面试题请移步至 「最新最全的前端面试题集锦」 查看。 前端安全模块精选篇 1. 代码注入XSS如何攻击如何防御cookie 如何防范 XSS 攻击 2. 跨站请求伪造CSRF3. 浏览器同源策略 SOP4. 跨域资源共享 CORS5. 密码…...

SpringBoot Security安全认证框架初始化流程认证流程之源码分析

SpringBoot Security安全认证框架初始化流程&认证流程之源码分析 以RuoYi-Vue前后端分离版本为例分析SpringBoot Security安全认证框架初始化流程&认证流程的源码分析 目录 SpringBoot Security安全认证框架初始化流程&认证流程之源码分析一、SpringBoot Security安…...

2024美赛预测算法 | 回归预测 | Matlab基于RIME-LSSVM霜冰算法优化最小二乘支持向量机的数据多输入单输出回归预测

2024美赛预测算法 | 回归预测 | Matlab基于RIME-LSSVM霜冰算法优化最小二乘支持向量机的数据多输入单输出回归预测 目录 2024美赛预测算法 | 回归预测 | Matlab基于RIME-LSSVM霜冰算法优化最小二乘支持向量机的数据多输入单输出回归预测预测效果基本介绍程序设计参考资料 预测效…...

test1

1...

远程主机可能不符合 glibc 和 libstdc++ Vs Code 服务器的先决条件

vscode连接远程主机报错&#xff0c;原因官方已经公布过了&#xff0c;需要远程主机 glibc>2.28&#xff0c;所以Ubuntu18及以下版本没法再远程连接了&#xff0c;其他Linux系统执行ldd --version查看glibc版本自行判断。 解决方案建议&#xff1a; 不要再想升级glibc了 问题…...

备战蓝桥杯---数据结构与STL应用(进阶2)

本文将主要围绕有关map的今典应用展开&#xff1a; 下面我用图进行分析&#xff1a; 下面为AC代码&#xff1a; #include<bits/stdc.h> using namespace std; struct Point {int x,y;bool operator < (const Point & r) const {return x < r.x || ( x r.x &a…...

SpringBoot:多环境配置

多环境配置demo代码&#xff1a;点击查看LearnSpringBoot02 点击查看更多的SpringBoot教程 方式一、多个properties文件配置 注意&#xff1a;创建properties文件,命名规则&#xff1a;application-&#xff08;环境名称&#xff09; 示例&#xff1a;application-dev.proper…...

input框中添加一个 X(关闭/清空按钮)

要在输入框&#xff08;<input> 元素&#xff09;中添加一个 X&#xff08;关闭/清空按钮&#xff09;&#xff0c;可以使用 CSS 和 JavaScript 实现。 HTML&#xff1a; <div class"input-container"><input type"text" id"myInput…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

Ubuntu系统复制(U盘-电脑硬盘)

所需环境 电脑自带硬盘&#xff1a;1块 (1T) U盘1&#xff1a;Ubuntu系统引导盘&#xff08;用于“U盘2”复制到“电脑自带硬盘”&#xff09; U盘2&#xff1a;Ubuntu系统盘&#xff08;1T&#xff0c;用于被复制&#xff09; &#xff01;&#xff01;&#xff01;建议“电脑…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...