Hive窗口函数详解
一、 窗口函数知识点
1.1 窗户函数的定义
窗口函数可以拆分为【窗口+函数】。窗口函数官网指路:
LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundationhttps://cwiki.apache.org/confluence/display/Hive/LanguageManual%20WindowingAndAnalytics
- 窗口:over(),窗口的本质是:指明了函数要处理的数据范围
- 函数:指明函数计算逻辑
1.2 窗户函数的语法
<窗口函数>window_name over ( [partition by 字段...] [order by 字段...] [窗口子句] )
- window_name:给窗口指定一个别名。
- over:用来指定函数执行的窗口范围,如果后面括号中什么都不写,即over() ,意味着窗口包含满足where 条件的所有行,窗口函数基于所有行进行计算。
- 符号[] 代表:可选项; | : 代表二选一
- partition by 子句: 窗口按照哪些字段进行分组,窗口函数在不同的分组上分别执行。分组间互相独立。
- order by 子句:每个partition内部按照哪些字段进行排序,如果没有partition ,那就直接按照最大的窗口排序,且默认是按照升序(asc)排列。
- 窗口子句:显示声明范围(不写窗口子句的话,会有默认值)。常用的窗口子句如下:
1.3 窗口子句范围大小的控制
rows 或 range子句往往来控制窗口的边界范围,其语法如下:
rows between unbounded preceding and unbounded following; -- 上无边界到下无边界(一般用于求 总和)rows between unbounded preceding and current row; --上无边界到当前记录(累计值)rows between 1 preceding and current row; --从上一行到当前行rows between 1 preceding and 1 following; --从上一行到下一行rows between current row and 1 following; --从当前行到下一行
1.4 rows与range的区别
- rows:rows是真实的行数,也就是我们实际中所说的1,2,3...连续的行数。
- range:range是逻辑上的行数,需要通过计算才能知道是哪一行。
ps: over()里面有order by子句,但没有窗口子句时 ,即: <窗口函数> over ( partition by 字段... order by 字段... ),此时窗口子句是有默认值的 --> rows between unbounded preceding and current row (上无边界到当前行)。
此时窗口函数语法:<窗口函数> over ( partition by 字段... order by 字段... ) 等价于
<窗口函数> over ( partition by 字段... order by 字段... rows between unbounded preceding and current row)
需要注意有个特殊情况:当order by 后面跟的某个字段是有重复行的时候, <窗口函数> over ( partition by 字段... order by 字段... ) 不写窗口子句的情况下,窗口子句的默认值是:range between unbounded preceding and current row(上无边界到当前相同行的最后一行)。
因此,遇到order by 后面跟的某个字段出现重复行,且需要计算【上无边界到当前行】,那就需要手动指定窗口子句 rows between unbounded preceding and current row ,偷懒省略窗口子句会出问题~
总结如下:
1、窗口子句不能单独出现,必须有order by子句时才能出现。
2、当省略窗口子句时:a) 如果存在order by则默认的窗口是unbounded preceding and current row --当前组的第一行到当前行,即在当前组中,第一行到当前行b) 如果没有order by则默认的窗口是unbounded preceding and unbounded following --整个组
口诀:
- 有partition by 且有order by,窗口范围:分组中第一行到当前行
- 有partition by 无order by ,窗口范围:整个分组
- 无partition by 且有order by 窗口范围:整个表中第一行到当前行
- 无partition by 无order by,窗口范围:整个分组,即over()
1.5 窗口函数执行顺序
一般而言:sql 执行顺序
from ->join ->on ->where ->group by->with (可以在分组后面加上 with rollup,在分组之后对每个组进行全局汇总) ->select 后面的普通字段,聚合函数-> having(having中可以使用select 字段别名) -> distinct -> order by ->limit
而窗口函数的执行顺序: 窗口函数是作用于select后的结果集。select 的结果集作为窗口函数的输入,但是位于 distcint 之前。窗口函数的执行结果只是在原有的列中单独添加一列,形成新的列,它不会对已有的行或列做修改。窗口函数简化版的执行顺序:
窗口函数具体实现原理:
select channel, month,sum(amount) as sum,dense_rank() over (partition by channel order by sum(amount) desc) as dr,row_number() over(partition by channel order by sum(amount) desc) as rn
from sales
group by channel,month;
考虑以上代码,在hive中具体实现主要有两个阶段:
step1 : 计算除窗口函数以外所有的其他运算,如:from 、join 、where、group by、having等。上面的代码的第一阶段即为:
select channel,month, sum(amount) as sum
from sales
group by channel, month;
step2:将step1 的输出作为 WindowingTableFunction窗口函数的输入,计算对应的窗口函数值。
1.6 条件判断语句嵌套window子句的执行顺序
HiveSQL——条件判断语句嵌套windows子句的应用-CSDN博客文章浏览阅读1.4k次,点赞42次,收藏21次。HiveSQL——条件判断语句嵌套windows子句的应用https://blog.csdn.net/SHWAITME/article/details/136079305?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522170763988016800180626588%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fblog.%2522%257D&request_id=170763988016800180626588&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~first_rank_ecpm_v1~rank_v31_ecpm-1-136079305-null-null.nonecase&utm_term=%E6%9D%A1%E4%BB%B6&spm=1018.2226.3001.4450 结论:
- case when(或 if)语句中嵌套窗口函数时,条件判断语句的执行顺序在窗口函数之后
- 窗口函数partition by子句中是可以嵌套条件判断语句的 case when(或 if)
1.7 窗口函数中的partition by分组与group by的区别
-
group by 汇总后行数减少,partition by汇总后原表中的行数没变。
-
group by分组后,一组中只返回一个结果。窗口函数中partition by分组,每组每行中都会有一个分析结果。
-
group by分组后,select中的字段必须是group by的字段、sum()等聚合函数或常量;但是窗口函数中的partition by 分组就没有此限制,窗口函数分析的结果可以与表中其他字段并列,其相当于在原表每个分组中新增了一列。
举例:
CREATE TABLE t_order (oid int ,uid int ,otime string,oamount int)
ROW format delimited FIELDS TERMINATED BY ",";
load data local inpath "/opt/module/hive_data/t_order.txt" into table t_order;
with tmp as (selectoid,uid,otime,oamount,date_format(otime, 'yyyy-MM') as dt,---计算rk的目的是为了获取记录中的第一条row_number() over (partition by uid,date_format(otime, 'yyyy-MM') order by otime) rkfrom t_orderorder by uid
)
selectuid,--每个用户一月份的订单数sum(if(dt = '2018-01', 1, 0)) as m1_count,--每个用户二月份的订单数sum(if(dt = '2018-02', 1, 0)) as m2_count,--每个用户三月份的订单数(当月订单金额超过10元的订单个数)sum(if(dt = '2018-03' and oamount > 10, 1, 0)) m3_count,--当月(3月份)首次下单的金额sum(if(dt = '2018-03' and rk = 1, oamount, 0)) m3_first_amount,-- 开窗函数row_number() over (partition by uid order by sum(if(dt = '2018-01', 1, 0)))rk
from tmp
group by uid
having m1_count >0 and m2_count=0;
-
根据HiveSQL的执行顺序得到,窗口函数的执行是在group by,having之后进行,是与select同级别的。如果SQL中既使用了group by又使用了partition by,那么此时partition by的分组是基于group by分组之后的结果集进行的再次分组,即窗口函数分析的数据范围也是基于group by后的数据。
-
窗口中的partition by分组后,并没有去重功能,而group by具有去重功能
二、窗口函数运用案例
聚合窗口函数-——聚合开窗求累积汇总值
HiveSQL题——聚合函数(sum/count/max/min/avg)-CSDN博客文章浏览阅读1.1k次,点赞19次,收藏19次。HiveSQL题——聚合函数(sum/count/max/min/avg)https://blog.csdn.net/SHWAITME/article/details/135918264排序窗口函数——排序开窗求topN
HiveSQL题——排序函数(row_number/rank/dense_rank)-CSDN博客文章浏览阅读1.3k次,点赞20次,收藏16次。HiveSQL题——排序函数(row_number/rank/dense_rank)https://blog.csdn.net/SHWAITME/article/details/135909662前后窗口函数
HiveSQL题——前后函数(lag/lead)_sql hive lead-CSDN博客文章浏览阅读1.2k次,点赞23次,收藏21次。HiveSQL题——前后函数(lag/lead)_sql hive leadhttps://blog.csdn.net/SHWAITME/article/details/135902998注:参考文章:
窗口函数应用之移动范围计算【详细剖析窗口函数】(HiveSql面试题4详解)-CSDN博客文章浏览阅读3.5k次,点赞17次,收藏53次。本文通过案例来引出对窗口函数的认识,总结了窗口函数的用法及使用规律,该案例主要是对窗口函数在移动计算中的应用,类似于滑动窗口,所谓的滑动窗口也就是指每一行对应对应的数据窗口都不同,通过窗口子句类实现移动计算时数据的范围,也就是窗口每次按行滑动时长度大小,但窗口中每一次对应的数据总是在变化。通过本文你可以获得如下知识: (1)窗口函数的使用规则及用法 (2)窗口子句的使用规则 (3)窗口函数的意义 (4)窗口函数在移动计算中的应用_窗口函数应用之移动范围计算【详细剖析窗口函数】https://blog.csdn.net/godlovedaniel/article/details/106542519
相关文章:
Hive窗口函数详解
一、 窗口函数知识点 1.1 窗户函数的定义 窗口函数可以拆分为【窗口函数】。窗口函数官网指路: LanguageManual WindowingAndAnalytics - Apache Hive - Apache Software Foundationhttps://cwiki.apache.org/confluence/display/Hive/LanguageManual%20Windowing…...

车载电子电器架构 —— 电子电气系统功能开发
车载电子电器架构 —— 电子电气系统功能开发 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 本就是小人物,输了就是输了,不要在意别人怎么看自己。江湖一碗茶,喝完再挣扎,出门靠自己,四海皆…...
LeetCode--代码详解 7.整数反转
7.整数反转 题目 给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。 如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。 假设环境不允许存储 64 位整数(有符号或无符号)。 示例 …...

《统计学简易速速上手小册》第6章:多变量数据分析(2024 最新版)
文章目录 6.1 主成分分析(PCA)6.1.1 基础知识6.1.2 主要案例:客户细分6.1.3 拓展案例 1:面部识别6.1.4 拓展案例 2:基因数据分析 6.2 聚类分析6.2.1 基础知识6.2.2 主要案例:市场细分6.2.3 拓展案例 1&…...

创新S3存储桶检索:Langchain社区S3加载器搭载OpenAI API
在瞬息万变的数据存储和处理领域,将高效的云存储解决方案与先进的 AI 功能相结合,为处理大量数据提供了一种变革性的方法。本文演示了使用 MinIO、Langchain 和 OpenAI 的 GPT-3.5 模型的实际实现,重点总结了存储在 MinIO 存储桶中的文档。 …...

【Linux技术宝典】Linux入门:揭开Linux的神秘面纱
文章目录 官网Linux 环境的搭建方式一、什么是Linux?二、Linux的起源与发展三、Linux的核心组件四、Linux企业应用现状五、Linux的发行版本六、为什么选择Linux?七、总结 Linux,一个在全球范围内广泛应用的开源操作系统,近年来越来…...
C语言---------对操作符的进一步认识
操作符中有⼀些操作符和⼆进制有关系,我们先学习了⼀下⼆进制的和进制转换的知识。 1.原码、反码和补码。 有符号整数的三种表⽰⽅法均有符号位和数值位两部分, 2进制序列中,最⾼位的1位是被当做符号位,剩余的都是数值位。 符号…...

HarmonyOS 鸿蒙 ArkTS ArkUI 页面之间切换转换动画设置
第一步:导入 import promptAction from ohos.promptAction 第二步:在build下方写入 pageTransition(){PageTransitionEnter({ duration: 1200 }).slide(SlideEffect.Right)PageTransitionExit({ delay: 100 }).translate({ x: 100.0, y: 100.0 }).opac…...

《CSS 简易速速上手小册》第8章:CSS 性能优化和可访问性(2024 最新版)
文章目录 8.1 CSS 文件的组织和管理8.1.1 基础知识8.1.2 重点案例:项目样式表结构8.1.3 拓展案例 1:使用BEM命名规范8.1.4 拓展案例 2:利用 Sass 混入创建响应式工具类 8.2 提高网页加载速度的技巧8.2.1 基础知识8.2.2 重点案例:图…...

Peter算法小课堂—背包问题
我们已经学过好久好久的动态规划了,动态规划_Peter Pan was right的博客-CSDN博客 那么,我用一张图片来概括一下背包问题。 大家有可能比较疑惑,优化决策怎么优化呢?答案是,滚动数组,一个神秘而简单的东西…...
网易腾讯面试题精选----50 个 Git 面试问题
介绍 Git 是 DevOps 之旅的起点。所以,我只是概述了 50 个快速问题以及 Git 的答案。这些问题非常快,你可以在 DevOps 面试中问。它适合初学者到中级水平。 面试问答 1.问:什么是Git? 答:Git 是一个分布式版本控制系统,允许多个开发人员在一个项目上进行协作并跟踪源代…...

Android CMakeLists.txt语法详解
一.CMake简介 你或许听过好几种 Make 工具,例如 GNU Make ,QT 的 qmake ,微软的 MSnmake,BSD Make(pmake),Makepp,等等。这些 Make 工具遵循着不同的规范和标准,所执行的…...

Vue3快速上手(二)VSCode官方推荐插件安装及配置
一、VSCode官方插件安装,如下图2款插件 在用vite创建的程序里,提示提安装推荐的插件了,如下图: 二、配置 在设置-扩展里找到Volar插件,将Dot Value勾选上。这样在ref()修改变量时,会自动填充.value,无需…...
等保2、3级所需设备
三级等保要求及所需设备 《等级保护基本要求》所需设备 结构安全(G3) b)应保证网络各个部分的宽带满足业务高峰期需要; g)应按照对业务服务的需要次序来指定宽带分配优先级别,保证在网络发生拥堵的时候优先保护重要主机 负载均衡…...

6 scala-面向对象编程基础
Scala 跟 Java 一样,是一门面向对象编程的语言,有类和对象的概念。 1 类与对象 与 Java 一样,Scala 也是通过关键字 class 来定义类,使用关键字 new 创建对象。 要运行我们编写的代码,同样像 Java 一样,…...

【linux温故】linux调度机制
假如你是设计者,你会设计怎样的调度机制呢? 时间片 最简单的,小学生都能想出来的一种,每个 ready task,按照一个固定的时间片轮流执行。 大家不要抢,挨个儿排队执行。执行完时间片,就排在后面…...
django中如何使用mysql连接池
一:介绍 在Django中使用MySQL时,通常情况下,Django的数据库层会为你管理数据库连接。Django的数据库接口是线程安全的,这意味着它会自动为每个线程创建和管理数据库连接。在大多数情况下,你不需要手动创建线程池来管理…...

3D高斯溅射:面向三维场景的实时渲染技术
1. 前言 高斯溅射技术【1】一经推出,立刻引起学术界和工业界的广泛关注。相比传统的隐式神经散射场渲染技术,高斯溅射依托椭球空间,显性地表示多目图像的三维空间关系,其计算效率和综合性能均有较大的提升,且更容易理…...

【数据结构】13:表达式转换(中缀表达式转成后缀表达式)
思想: 从头到尾依次读取中缀表达式里的每个对象,对不同对象按照不同的情况处理。 如果遇到空格,跳过如果遇到运算数字,直接输出如果遇到左括号,压栈如果遇到右括号,表示括号里的中缀表达式已经扫描完毕&a…...
MySQL进阶查询篇(9)-视图的创建和应用
数据库视图是MySQL中一个非常重要的概念。它是一个虚拟表,由一个查询的结果集组成。数据库视图为用户提供了一种简化数据查询和操作的方式。本文将介绍MySQL数据库视图的创建和应用。 1. 创建数据库视图 要创建MySQL数据库视图,我们使用CREATE VIEW语句…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...

高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...