《Java 简易速速上手小册》第8章:Java 性能优化(2024 最新版)

文章目录
- 8.1 性能评估工具 - 你的性能探测仪
- 8.1.1 基础知识
- 8.1.2 重点案例:使用 VisualVM 监控应用性能
- 8.1.3 拓展案例 1:使用 JProfiler 分析内存泄漏
- 8.1.4 拓展案例 2:使用 Gatling 进行 Web 应用压力测试
- 8.2 JVM 调优 - 魔法引擎的调校
- 8.2.1 基础知识
- 8.2.2 重点案例:优化 Web 应用的 JVM 设置
- 8.2.3 拓展案例 1:使用 Parallel GC 优化批处理应用
- 8.2.4 拓展案例 2:减少 Full GC 的发生频率
- 8.3 代码优化策略 - 编码的艺术
- 8.3.1 基础知识
- 8.3.2 重点案例:优化搜索算法
- 8.3.3 拓展案例 1:循环优化
- 8.3.4 拓展案例 2:利用并发提升数据处理效率
8.1 性能评估工具 - 你的性能探测仪
在Java应用的性能优化之旅中,首先需要做的就是准确地评估和定位现有性能问题。幸运的是,我们有一系列强大的工具可以帮助我们完成这个任务。
8.1.1 基础知识
-
VisualVM: 免费工具,提供了一套可视化界面来监控Java应用的CPU、内存使用情况,线程和堆信息等。它还可以对Java应用进行性能分析和内存分析。
-
JProfiler: 商业工具,提供了更深入的性能分析功能,包括实时的CPU、内存使用监控,内存泄漏侦测,数据库访问分析等。
-
Gatling: 专注于Web应用的性能测试工具,可以模拟高并发访问,并生成详细的性能报告。
8.1.2 重点案例:使用 VisualVM 监控应用性能
我们将展示如何使用VisualVM对Java应用进行基本的性能监控。
步骤:
- 下载并安装VisualVM。
- 启动你的Java应用。
- 打开VisualVM,从左侧进程列表中选择你的Java应用。
- 查看“监视器”和“分析器”标签页,以获取CPU和内存的使用情况,以及线程的信息。
示例代码(一个简单的Java程序,用于生成CPU和内存负载):
public class PerformanceLoadGenerator {public static void main(String[] args) {for (int i = 0; i < 100; i++) {new Thread(() -> {while (true) {Math.pow(Math.random(), Math.random());}}).start();}}
}
8.1.3 拓展案例 1:使用 JProfiler 分析内存泄漏
在这个案例中,我们会演示如何使用JProfiler来诊断和分析Java应用中的内存泄漏。
步骤:
- 启动JProfiler并连接到你的Java应用。
- 在“堆栈”标签页中,开始记录内存分配。
- 执行一系列操作来模拟用户行为。
- 停止记录,并查看“类视图”或“对象视图”找到可能的内存泄漏。
示例代码(一个可能存在内存泄漏的Java程序):
import java.util.ArrayList;
import java.util.List;public class MemoryLeakExample {private static final List<Double> list = new ArrayList<>();public static void main(String[] args) {while (true) {list.add(Math.random());}}
}
8.1.4 拓展案例 2:使用 Gatling 进行 Web 应用压力测试
最后,我们将演示如何使用Gatling工具对Web应用进行压力测试,以评估其在高并发情况下的性能。
步骤:
- 安装Gatling并创建一个测试脚本。
- 定义模拟的用户行为和请求参数。
- 运行Gatling测试。
- 分析测试报告,找出性能瓶颈。
示例Gatling脚本(模拟多用户访问Web应用):
import io.gatling.core.Predef._
import io.gatling.http.Predef._
import scala.concurrent.duration._class BasicSimulation extends Simulation {val httpProtocol = http.baseUrl("http://yourwebapp.com").acceptHeader("text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8").doNotTrackHeader("1")val scn = scenario("BasicSimulation").exec(http("request_1").get("/")).pause(5)setUp(scn.inject(atOnceUsers(100))).protocols(httpProtocol)
}
通过以上案例,你已经学会了如何使用VisualVM进行基本的性能监控,使用JProfiler分析内存泄漏,以及使用Gatling进行Web应用的压力测试。掌握这些工具将使你能够更加自信地面对性能优化的挑战。

8.2 JVM 调优 - 魔法引擎的调校
Java虚拟机(JVM)是Java应用运行的心脏,正确调优JVM可以显著提升应用性能,就像为你的魔法引擎进行精细调校一样,让它运行得更快、更高效。
8.2.1 基础知识
-
堆内存设置:JVM堆内存是Java对象生存的地方。通过调整堆内存的大小(使用
-Xms设置初始堆大小,-Xmx设置最大堆大小),可以优化垃圾收集性能,避免内存溢出。 -
垃圾回收器选择:不同的垃圾回收器(GC)适用于不同的场景和应用需求。常见的垃圾回收器有Serial GC、Parallel GC、CMS、G1等。
-
JVM监控和诊断工具:使用JVM监控工具(如jstat、jmap、jstack)和诊断工具(如Java Mission Control)可以帮助识别性能瓶颈和内存泄漏。
8.2.2 重点案例:优化 Web 应用的 JVM 设置
假设你负责一个高流量的Java Web应用,此应用在高负载时出现了性能瓶颈。通过调优JVM设置,我们可以提高应用性能。
步骤:
- 识别性能瓶颈:使用JVM监控工具观察应用在高负载时的性能指标。
- 调整堆内存大小:根据应用的实际使用情况调整
-Xms和-Xmx参数,比如设置-Xms4g -Xmx4g,为JVM堆分配更多内存。 - 选择合适的垃圾回收器:对于需要低延迟的Web应用,可以考虑使用G1垃圾回收器,设置
-XX:+UseG1GC。
示例JVM启动参数:
java -Xms4g -Xmx4g -XX:+UseG1GC -jar your-web-app.jar
8.2.3 拓展案例 1:使用 Parallel GC 优化批处理应用
对于一些后台运行的大数据处理或批处理应用,吞吐量是最重要的指标。Parallel GC是一个以达到高吞吐量为目标的垃圾回收器。
示例JVM启动参数:
java -Xms8g -Xmx8g -XX:+UseParallelGC -jar your-batch-app.jar
通过设置-XX:+UseParallelGC,我们告诉JVM使用Parallel GC,这对于提高批处理任务的处理速度非常有效。
8.2.4 拓展案例 2:减少 Full GC 的发生频率
频繁的Full GC会严重影响应用的性能。通过调整新生代和老年代的大小,可以减少Full GC的发生频率。
示例JVM启动参数:
java -Xms4g -Xmx4g -XX:NewRatio=3 -jar your-app.jar
这里-XX:NewRatio=3表示老年代与新生代的比例是3:1,给老年代分配更多的内存空间可以减少对象晋升到老年代的频率,从而减少Full GC的发生。
通过以上案例,你已经学会了如何针对不同类型的Java应用进行JVM调优,从而提升应用的性能。记住,JVM调优是一个反复试验和评估的过程,每个应用的最佳配置都是独一无二的。使用正确的工具和策略,你的Java应用将运行得更加流畅和高效。

8.3 代码优化策略 - 编码的艺术
代码优化是提升Java应用性能的基石。通过精简和优化代码,我们可以减少资源消耗,提高执行效率。下面是一些基本的代码优化策略,以及如何应用这些策略来提升你的Java应用性能。
8.3.1 基础知识
- 算法优化:选择合适的算法对性能影响巨大。时间复杂度和空间复杂度是衡量算法性能的关键指标。
- 循环优化:减少循环次数和循环内的计算量,避免在循环内进行不必要的操作。
- 数据结构选择:根据数据的使用模式选择合适的数据结构,比如在频繁查找操作中使用
HashMap而不是ArrayList。 - 避免重复计算:缓存计算结果以避免重复计算,特别是在计算成本高昂的情况下。
- 利用并发编程:合理利用多线程或并发工具来分摊任务,提升执行效率。
8.3.2 重点案例:优化搜索算法
假设我们有一个任务,需要在一个大型数据集中频繁搜索特定元素。原始实现使用了ArrayList,我们将通过优化算法和数据结构来提升搜索性能。
原始实现:
import java.util.ArrayList;
import java.util.List;public class SearchExample {public static boolean search(List<Integer> data, int key) {for (int item : data) {if (item == key) {return true;}}return false;}public static void main(String[] args) {List<Integer> data = new ArrayList<>();// 假设data被初始化并填充了大量元素boolean found = search(data, 12345);System.out.println("Found: " + found);}
}
优化后的实现:
将ArrayList替换为HashSet,提升搜索性能。
import java.util.HashSet;
import java.util.Set;public class OptimizedSearchExample {public static boolean search(Set<Integer> data, int key) {return data.contains(key);}public static void main(String[] args) {Set<Integer> data = new HashSet<>();// 假设data被初始化并填充了大量元素boolean found = search(data, 12345);System.out.println("Found: " + found);}
}
8.3.3 拓展案例 1:循环优化
对于一个处理大量数据的循环,优化其执行路径可以显著提升性能。
优化前:
for (int i = 0; i < data.size(); i++) {if (expensiveComputation(data.get(i))) {// 处理结果}
}
优化后:
将条件判断移出循环,减少循环内的计算量。
for (int i = 0; i < data.size(); i++) {preComputedResult = preCompute(data.get(i));if (preComputedResult) {// 处理结果}
}
8.3.4 拓展案例 2:利用并发提升数据处理效率
对于数据处理密集型任务,通过并行处理可以显著缩短总体执行时间。
示例代码:
使用Java 8的Stream API进行并行处理。
import java.util.List;
import java.util.stream.Collectors;
import java.util.stream.IntStream;public class ParallelProcessingExample {public static void main(String[] args) {List<Integer> data = IntStream.rangeClosed(1, 1000000).boxed().collect(Collectors.toList());long startTime = System.currentTimeMillis();data.parallelStream().forEach(ParallelProcessingExample::expensiveOperation);long endTime = System.currentTimeMillis();System.out.println("Processing time: " + (endTime - startTime) + "ms");}public static void expensiveOperation(int item) {// 模拟一个耗时操作try {Thread.sleep(1);} catch (InterruptedException e) {Thread.currentThread().interrupt();}}
}
通过这些案例,我们看到了通过算法优化、循环优化和利用并发编程等策略,可以显著提升Java应用的性能。性能优化是一个持续的过程,始终需要我们在实践中不断地探索和学习。
相关文章:
《Java 简易速速上手小册》第8章:Java 性能优化(2024 最新版)
文章目录 8.1 性能评估工具 - 你的性能探测仪8.1.1 基础知识8.1.2 重点案例:使用 VisualVM 监控应用性能8.1.3 拓展案例 1:使用 JProfiler 分析内存泄漏8.1.4 拓展案例 2:使用 Gatling 进行 Web 应用压力测试 8.2 JVM 调优 - 魔法引擎的调校8…...
mysql全国省市县三级联动创表sql(一)
1. 建表sql CREATE TABLE province (id VARCHAR ( 32 ) PRIMARY KEY COMMENT 主键,code CHAR ( 6 ) NOT NULL COMMENT 省份编码,name VARCHAR ( 40 ) NOT NULL COMMENT 省份名称 ) COMMENT 省份信息表;CREATE TABLE city (id VARCHAR ( 32 ) PRIMARY KEY COMMENT 主键,code …...
go面试题--使用两个goroutine交替打印数字与字母
使用两个goroutine交替打印数字与字母 题目如下: 使用两个goroutine交替打印序列,一个goroutine打印数字,另外一个goroutine打印字母,最终效果如下: 12AB34CD56EF78GH910IZ1112KL1314MN1516OP1718QR1920ST2122UV2324W…...
DolphinScheduler-3.2.0 集群搭建
目录 一、基础环境准备 1.1 组件下载地址 1.2 前置准备工作 二、 DolphinScheduler集群部署 2.1 解压安装包 2.2 配置数据库 2.3 准备 DolphinScheduler 启动环境 2.3.1 配置用户免密及权限 2.3.2 配置机器 SSH 免密登陆 2.3.3 启动 zookeeper集群 2.3.4 修改instal…...
07:Kubectl 命令详解|K8S资源对象管理|K8S集群管理(重难点)
Kubectl 命令详解|K8S资源对象管理|K8S集群管理 kubectl管理命令kubectl get 查询资源常用的排错命令kubectl run 创建容器 POD原理pod的生命周期 k8s资源对象管理资源文件使用资源文件管理对象Pod资源文件deploy资源文件 集群调度的规则扩容与缩减集群更…...
【设计模式】springboot3项目整合模板方法深入理解设计模式之模板方法(Template Method)
🎉🎉欢迎光临🎉🎉 🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀 🌟特别推荐给大家我的最新专栏《Spring 狂野之旅:底层原理高级进阶》 🚀…...
Windows搭建docker+k8s
安装Docker Desktop 从官网下载,然后直接安装即可,过程很简单,一直Next就行。 有一点需要注意就是要看好对应的版本,因为后边涉及到版本的问题。 https://www.docker.com/products/docker-desktop 安装完成,双击图…...
年假作业10
一、选择题 BBDBACCCAD 二、填空题 1,4,13,40 3715 358 5 2 6 1 5 4 8 2 0 2 三、编程题 1、 #include <iostream> #include<array> #include <limits> using namespace std; int main() {array<int,10> score;array<int,10>::iterat…...
[ai笔记4] 将AI工具场景化,应用于生活和工作
欢迎来到文思源想的AI空间,这是技术老兵重学ai以及成长思考的第4篇分享内容! 转眼已经到了大年初三,但是拜年的任务还只完成了一半,准备的大部头的书,现在也就看了两本,还好AI笔记通过每天早起坚持了下来。…...
【生产实测可用】Redis修改集群弱口令
起因 漏扫redis连接发现弱口令需要修改 先连上去看看是空口令还是弱口令 redis-cli -p 6379 -h a.b.c.d info sentinel找到启动服务器的配置文件 cp -av /app/redis-7001/redis.conf /app/redis-7001/redis.conf.bak20240207 echo "requirepass 口令" >>/a…...
备战蓝桥杯---图论基础理论
图的存储: 1.邻接矩阵: 我们用map[i][j]表示i--->j的边权 2.用vector数组(在搜索专题的游戏一题中应用过) 3.用邻接表: 下面是用链表实现的基本功能的代码: #include<bits/stdc.h> using nam…...
[office] excel2003进行可视性加密的方法 #媒体#其他#知识分享
excel2003进行可视性加密的方法 Excel如何对重要文件进行可视性的加密处理呢?下面是小编带来的关于excel2003进行可视性加密的方法,希望阅读过后对你有所启发! excel2003进行可视性加密的方法: 可视性加密步骤1:打开你要加密的excel2003文档…...
算法沉淀——分治算法(leetcode真题剖析)
算法沉淀——分治算法 快排思想01.颜色分类02.排序数组03.数组中的第K个最大元素04.库存管理 III 归并思想01.排序数组02.交易逆序对的总数03.计算右侧小于当前元素的个数04.翻转对 分治算法是一种解决问题的算法范式,其核心思想是将一个大问题分解成若干个小问题&a…...
Qt 进程守护程序
Qt 进程守护程序 简单粗暴的监控,方法可整合到其他代码。 一、windows环境下 1、进程查询函数 processCount函数用于查询系统所有运行的进程中该进程运行的数量,比如启动了5个A进程,该函数查询返回的结果就为5。 windows下使用了API接口查询…...
Linux_文件系统
假定外部存储设备为磁盘,文件如果没有被使用,那么它静静躺在磁盘上,如果它被使用,则文件将被加载进内存中。故此,可以将文件分为内存文件和磁盘文件。 内存文件 磁盘文件 软、硬链接 一.内存文件 1.1 c语言的文件接口 …...
算法沉淀——链表(leetcode真题剖析)
算法沉淀——链表 01.两数相加02.两两交换链表中的节点03.重排链表04.合并 K 个升序链表05.K个一组翻转链表 链表常用技巧 1、画图->直观形象、便于理解 2、引入虚拟"头节点" 3、要学会定义辅助节点(比如双向链表的节点插入) 4、快慢双指针…...
Flink从入门到实践(一):Flink入门、Flink部署
文章目录 系列文章索引一、快速上手1、导包2、求词频demo(1)要读取的数据(2)demo1:批处理(离线处理)(3)demo2 - lambda优化:批处理(离线处理&…...
python分离字符串 2022年12月青少年电子学会等级考试 中小学生python编程等级考试二级真题答案解析
目录 python分离字符串 一、题目要求 1、编程实现 2、输入输出 二、算法分析 三、程序代码 四、程序说明 五、运行结果 六、考点分析 七、 推荐资料 1、蓝桥杯比赛 2、考级资料 3、其它资料 python分离字符串 2022年12月 python编程等级考试级编程题 一、题目要…...
Excel练习:折线图突出最大最小值
Excel练习:折线图突出最大最小值 要点:NA值在折现图中不会被绘制,看似一条线,实际是三条线。换成0值和""都不行。 查看所有已分享Excel文件-阿里云 学习的这个视频:Excel折线图,…...
鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之MenuItem组件
鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之MenuItem组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、MenuItem组件 用来展示菜单Menu中具体的item菜单项。 子组件 无。 接口 Men…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
