为什么从没有负值的数据中绘制的小提琴图(Violin Plot)会出现负值部分?
🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/
小提琴图(Violin Plot) 是一种用于展示和比较数据分布的可视化工具。它结合了箱形图(Box Plot)和密度图(Kernel Density Plot)的特点:中间有箱形图表示四分位数和中位数,外围是密度估计曲线,显示数据分布的密度。这种设计旨在提供关于数据分布形状、峰度和离散性的直观信息。
小提琴图(Violin Plot)是一种常用于数据可视化的图表类型,它结合了箱形图和核密度估计图的特点,能够展示数据分布的形状、集中趋势和离散程度。下面我将详细介绍小提琴图的基本概念、可视化原理、应用场景以及其优缺点。
基本概念:小提琴图通常用于展示数值型数据的分布情况,它由两部分组成:中间的厚实区域表示数据的主体部分,类似于核密度图;两侧延伸出来的细长线条则代表数据的范围和密度,类似于箱形图的茎叶图。整个图形看起来像一支小提琴,因此得名 “小提琴图”。
可视化原理:小提琴图通过展示数据分布的形状、集中趋势和离散程度,有助于比较不同类别之间的数据分布情况。它利用核密度估计来描述数据分布的形状,并且可以同时显示出不同类别之间的差异。
应用场景:
-
比较群体分布:小提琴图适合比较不同群体或类别下数值型变量的分布情况,能够直观展现各群体之间的差异。
-
与其他变量关系:可以结合其他变量进行多变量分析,例如在分类变量下对数值型变量进行分布比较。
-
异常值检测:通过小提琴图可以快速发现数据中是否存在异常值或者长尾现象。
优缺点
优点:
- 直观显示数据分布:小提琴图能够清晰地展示数据的整体分布情况,包括峰度、偏度等特征。
- 比较多组数据:能够同时比较多组数据在同一坐标系下的分布情况。
- 美学效果:小提琴图外形独特美观,在报告和论文中具有较高的表现力。
缺点:
-
信息密度相对较低:相比于箱形图,小提琴图在同样大小空间内能表示的信息相对较少。
-
易受样本大小影响:当样本过小时,小提琴图可能无法准确呈现真实数据分布。
总结:小提琴图作为一种常见的数据可视化手段,在比较多组数值型变量的分布时具有独特优势。然而,在使用时需要注意样本大小对结果呈现的影响,并结合具体场景选择合适的可视化手段。
为什么从没有负值的数据中绘制的小提琴图会出现负值部分?
现象描述:当从没有负值的数据中绘制小提琴图时,有时会出现看似负值的部分。这可能让人感到困惑,因为原始数据中并不存在负值。
解释背后的原因:
-
这种现象通常是由于小提琴图的核密度估计部分所引起的。核密度估计是一种非参数统计方法,用于估计随机变量的概率密度函数。在生成小提琴图时,核密度估计会对数据进行平滑处理,并且在数据范围之外也会有一定程度上的延伸。
-
因此,即使原始数据中没有负值,核密度估计图在绘制小提琴图时可能会在零点之下产生一些看似负值的部分。这并不意味着实际存在负值,而只是表示在这个区域内的数据密度较低。
出现这种情况主要是由于小提琴图外围的密度估计过程引起的。下面详细解释:
-
核密度估计(KDE)原理:小提琴图使用核密度估计来平滑数据点,生成外围形状。KDE 是一种非参数方式来估计随机变量的概率密度函数。简而言之,它通过对单个数据点周围放置一个 “核”,然后将所有数据点的核叠加起来生成整体的密度估计。
-
边界效应:当数据集中所有值都为正且接近零时,KDE 过程可能会在零以下产生非零密度估计,因为某些核会延伸到负值区域。这不意味着数据实际上有负值,而只是密度估计算法试图捕捉到接近零区域的数据分布情况。
-
带宽选择:KDE 中一个关键参数是带宽(bandwidth),它决定了核的宽度。带宽选择过大或过小都可能导致不准确的密度估计。如果带宽太大,那么生成的密度曲线将更平滑但可能延伸到实际数据范围之外;如果带宽太小,则可能导致过拟合和曲线噪声。
-
解决方案:
- 调整带宽:减少核密度估计中使用的带宽大小可以减少负值区域的影响,但需平衡以避免过拟合。
- 截断处理:在某些软件或绘图库中,可以指定 KDE 曲线不要扩展到特定值以下(例如 0),以避免在没有负值数据时显示负值部分。
- 使用其他可视化方法:如果小提琴图在特定情况下产生误导信息,可以考虑使用其他类型的可视化方法,如箱形图或直方图等。
总结:即使原始数据中没有负值,小提琴图也可能显示出负值部分主要是由于核密度估计引入边界效应所致。理解这一点有助于正确解读小提琴图,并根据需要调整可视化策略以准确传达数据信息。
相关文章:

为什么从没有负值的数据中绘制的小提琴图(Violin Plot)会出现负值部分?
🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 小提琴图(Violin Plot) 是一种用于展示和比较数据分布的可视化工具。它结合了箱形图(Box Plot)和密度图(Kernel Density Plot)的特…...
有哪几种行为会导致服务器被入侵
导致服务器被入侵的行为有很多种,以下是一些常见的行为: 系统漏洞:服务器操作系统或软件存在漏洞,攻击者可以通过利用这些漏洞获取系统权限,从而入侵服务器。 弱口令:服务器的账号密码过于简单或者未及时更…...
Redis RabbitMQ
Redis:轻量级,NoSQL数据库 redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这…...
http 和 https 的区别?
目录 1.http 和 https 的基本概念 2.http 和 https 的区别 3.https 协议的工作原理 4.https 协议的优点 5.https 协议的缺点 1.http 和 https 的基本概念 http: 超文本传输协议,是互联网上应用最为广泛的一种网络协议,是一个客户端和服务器端请求和…...
C++中线程的创建
线程创建 引言为什么要使用线程线程的创建使用函数指针示例运行结果使用类对象示例运行结果使用lambda表达式示例运行结果使用带参数的函数作为线程处理函数示例运行结果使用类成员函数示例运行结果引言 在学习C++的过程中,线程的使用作为一个非常重要的部分,也是在复杂项目…...

基于JavaWeb开发的家政服务平台计算机毕业设计[附源码]
基于JavaWeb开发的家政服务平台计算机毕业设计[附源码] 🍅 作者主页 央顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 🍅 查看下方微信号获取联系方式 承接各种定制系统…...

性能调优:容易忽视的JavaScript标签属性及其性能影响
在性能优化中,我们都知道,async属性可以让script标签变得不阻塞HTML解析,defer属性也有类似的功能,但实际defer是会阻塞script解析的(用defer的话,多个script会按顺序执行,而async执行是无序的&…...

【机器学习笔记】7 KNN算法
距离度量 欧氏距离(Euclidean distance) 欧几里得度量(Euclidean Metric)(也称欧氏距离)是一个通常采用的距离定义,指在𝑚维空间中两个点之间的真实距离,或者向量的自然长度(即该点…...

mysql 2-20
TEXT类型 枚举类型 SET类型 二进制字符串类型 BLOB类型 注意事项 JSON类型 提取数据 空间类型 选择建议 约束...

Unity3D Shader 素描风格渲染管线实现详解
前言 在游戏开发中,渲染效果是非常重要的一部分,它可以直接影响游戏的视觉效果和玩家的体验。而素描风格的渲染效果是一种非常独特和有趣的风格,可以为游戏增添一种艺术氛围。在Unity3D中,可以通过编写Shader来实现素描风格的渲染…...

WordPress站点如何实现发布文章即主动推送到百度快速收录和普通收录?
我们在WordPress后台成功发布文章之后,如果靠搜索引擎来抓取的话,可能会比较慢,所以十分有必要将我们成功发布的文章马上提交到百度、必应等搜索引擎中。下面boke112百科就跟大家说一说WordPress站点如何实现发布文章即主动推送到百度快速收录…...

C++11---(3)
目录 一、可变参数模板 1.1、可变参数模板的概念 1.2、可变参数模板的定义方式 1.3、如何获取可变参数 二、lambda表达式 2.1、Lamabda表达式定义 2.2、为什么有Lambda 2.3、Lambda表达式的用法 2.4、函数对象与lambda表达式 三、包装器 3.1、function 3.2、bind …...

【常识】大数据设计基础知识
底层存储:hadoop(hdfsmapreduce) Hadoop已经有十几年的历史,它是大数据领域的存储基石,HDFS目前仍然没有成熟替代品;MapR 文件系统在业内已经具有一定知名度了,不仅 MapR 宣布它自己的文件系统比 HDFS 快2-…...
Vue:Vuex模块化编码(非常实用)
一、情景说明 通过前面的学习,我们知道,Vuex的核心文件就是indexc.js 这个文件里面,主要是四个对象 actions、mutations、state、getters 那么,随着业务的复杂化,所有的逻辑都写在一个actions里面吗? 显然…...
springboot 异步执行方法详细介绍
在Spring Boot中,异步执行方法是一种提高应用程序性能和响应性的技术。通过异步执行,你可以在处理耗时的业务逻辑时,不需要阻塞当前线程,从而提高应用程序的吞吐量和并发处理能力。 基本概念 在Spring中ÿ…...

拿捏c语言指针(下)
前言 此篇讲解的主要是函数与指针的那些事~ 书接上回 拿捏c语言指针(上)和 拿捏c语言指针(中) 没有看的小伙伴要抓紧喽~ 欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误&#x…...
Spring源码笔记之SpringIOC--(3)什么是BeanFactory?
什么是BeanFactory? BeanFactory是SpringIOC的最顶层接口,涵盖了IOC容器最基本的操作。ListableBeanFactory、ConfigurableBeanFactory提供了IOC容器获取所有Bean、配置Bean的额外能力。所有BeanFactory的实现类持有所有Bean的定义BeanDefinition&#…...

微信小程序之会议OA个人中心后台交互
目录 获取用户昵称头像和昵称 小程序登录 登录-小程序 wx.checkSession wx.login wx.request 后台 准备数据表 反向生成工具生成 准备封装前端传过来的数据 小程序服器配置 导入微信小程序SDK application.yml WxProperties WxConfig WxAuthController 登录-小…...
代码随想录算法训练营第52天(动态规划09 ● 198.打家劫舍 ● 213.打家劫舍II ● 337.打家劫舍III
动态规划part09 198.打家劫舍解题思路 213.打家劫舍II解题思路 337.打家劫舍III解题思路 今天就是打家劫舍的一天,这个系列不算难,大家可以一口气拿下。 198.打家劫舍 题目链接: 198.打家劫舍 视频讲解: 198.打家劫舍 文章讲解&…...

微服务篇之负载均衡
一、Ribbon负载均衡流程 二、Ribbon负载均衡策略 1. RoundRobinRule:简单轮询服务列表来选择服务器。 2. WeightedResponseTimeRule:按照权重来选择服务器,响应时间越长,权重越小。 3. RandomRule:随机选择一个可用的服…...

C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...

centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...

P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

selenium学习实战【Python爬虫】
selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...
解决:Android studio 编译后报错\app\src\main\cpp\CMakeLists.txt‘ to exist
现象: android studio报错: [CXX1409] D:\GitLab\xxxxx\app.cxx\Debug\3f3w4y1i\arm64-v8a\android_gradle_build.json : expected buildFiles file ‘D:\GitLab\xxxxx\app\src\main\cpp\CMakeLists.txt’ to exist 解决: 不要动CMakeLists.…...

破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...