当前位置: 首页 > news >正文

【MATLAB】 EWT信号分解+FFT傅里叶频谱变换组合算法

有意向获取代码,请转文末观看代码获取方式~

展示出图效果

1 EWT分解算法

EWT分解算法是一种基于小波变换的信号分解算法,它可以将信号分解为一系列具有不同频率特性的小波分量。该算法的基本思想是将信号分解为多个不同尺度的小波分量,并对每个小波分量进行频域分析。

EWT分解算法具有以下优点:

  1. 具有良好的频率局部特性,能够准确地提取信号的频率信息。

  2. 能够适应各种类型的信号,具有较好的通用性。

  3. 能够有效地处理高频信号,对于突变信号有较好的适应性。

  4. 能够避免小波变换中的吉布斯现象,对于信号的细节信息有较好的保留。

在应用方面,EWT分解算法可以应用于信号处理、图像处理、地震信号处理等领域,是一种有效的信号分析方法。

MATLAB 信号分解第十期-EWT 分解:

信号分解全家桶详情请参见:

2 FFT傅里叶频谱变换算法

傅里叶变换是一种数学方法,用于将一个信号分解成一系列正弦和余弦函数的和,从而更好地理解和处理信号。傅里叶变换在信号处理领域有着广泛的应用,包括音频处理、图像处理等。 具体来说,傅里叶变换的步骤如下:

  1. 给定一个连续时间域函数f(t),其中t为时间。

  2. 对f(t)进行傅里叶变换,得到它的频率域表示F(ω),其中ω为角频率。

  3. F(ω)表示了f(t)中所有频率分量的幅度和相位信息。

  4. 将F(ω)分解成一系列正弦和余弦函数的和,即: F(ω) = ∑[a(k)cos(kω) + b(k)sin(kω)] 其中,k为频率分量的序号,a(k)和b(k)分别为对应的正弦和余弦函数的系数。 傅里叶变换的优点是可以将时间域中的信号转换成频率域中的信号,从而更好地理解信号的频率分量和周期性特征,同时也方便进行一些信号处理任务,例如滤波、降噪等。缺点是傅里叶变换需要对整个信号进行处理,计算量较大,在实时处理等场景下可能会存在较大的延迟。

MATLAB | 频谱分析算法 | 傅里叶变换 开源 MATLAB 代码请转:

MATLAB | 9种频谱分析算法全家桶详情请参见:

3 EWT信号分解+FFT傅里叶频谱变换组合算法

如下为简短的视频操作教程。

【MATLAB 】 EWT信号分解+FFT傅里叶频谱变换组合算法请转:

【MATLAB 】信号分解+FFT傅里叶频谱变换组合算法全家桶详情请参见:

关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~


代码见附件

相关文章:

【MATLAB】 EWT信号分解+FFT傅里叶频谱变换组合算法

有意向获取代码,请转文末观看代码获取方式~ 展示出图效果 1 EWT分解算法 EWT分解算法是一种基于小波变换的信号分解算法,它可以将信号分解为一系列具有不同频率特性的小波分量。该算法的基本思想是将信号分解为多个不同尺度的小波分量,并对…...

MATLAB中,如何捕获和处理异常?如何在MATLAB中自定义错误消息?在MATLAB中,error函数和warning函数有什么区别?

MATLAB中,如何捕获和处理异常? 在MATLAB中,捕获和处理异常通常使用try-catch语句。try块包含可能引发异常的代码,而catch块则包含当异常发生时执行的代码。以下是如何在MATLAB中捕获和处理异常的基本步骤: 使用try关键…...

【算法与数据结构】127、LeetCode单词接龙

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:示例1为例,hit到达cog的路线不止一条,如何找到最短是关键。广度优先搜索是一圈…...

CAN——创建一个数据库DBC文件

一、创建一个工程 file——new——can 500kbaud1ch 得到一个工程文件.cfg 二、实现两个节点通讯 can networks 三、创建数据库DBC tool——candbeditor——file——creatdatabase——cantemplate.dbc 1.建数值表 view——value tables——空白处右击add—— definition 定…...

(十三)【Jmeter】线程(Threads(Users))之tearDown 线程组

简述 操作路径如下: 作用:在正式测试结束后执行清理操作,如关闭连接、释放资源等。配置:设置清理操作的采样器、执行顺序等参数。使用场景:确保在测试结束后应用程序恢复到正常状态,避免资源泄漏或对其他测试的影响。优点:提供清理操作,确保测试环境的整洁和可重复性…...

MySQL数据库基础(十三):关系型数据库三范式介绍

文章目录 关系型数据库三范式介绍 一、什么是三范式 二、数据冗余 三、范式的划分 四、一范式 五、二范式 六、三范式 七、总结 关系型数据库三范式介绍 一、什么是三范式 设计关系数据库时,遵从不同的规范要求,设计出合理的关系型数据库&…...

掌控互联网脉络:深入解析边界网关协议(BGP)的力量与挑战

BGP简介 边界网关协议(Border Gateway Protocol,BGP)是互联网上最重要的路由协议之一,负责在不同自治系统(AS)之间传播路由信息。BGP使得互联网中的不同网络可以互相通信,支持互联网的规模化扩…...

Vue2页面转化为Vue3

vue2element-ui转化为Vue3element plus 后台管理系统&#xff1a;增删查改 vue2页面&#xff1a; <template><div class"app-container"><div><el-form:model"queryParams"ref"queryForm"size"small":inline&qu…...

【课程作业】提取图中苹果的面积、周长和最小外接矩形的python、matlab和c++代码

提取图中苹果的面积、周长和最小外接矩形 在图像处理中&#xff0c;提取对象的关键属性是常见的任务之一。本文将演示如何使用三种流行的编程语言——Python、Matlab和C&#xff0c;利用相应的图像处理库&#xff08;OpenCV或Matlab内置函数&#xff09;来提取图像中苹果的面积…...

解决easyExcel模板填充时转义字符\{xxx\}失效

正常我们在使用easyExcel进行模板填充时&#xff0c;定义的变量会填充好对应的实际数据&#xff0c;未定义的变量会被清空&#xff0c;但是如果这个未定义的变量其实是模板的一部分&#xff0c;那么清空了就出错了。 在这张图里&#xff0c;上面的是模板填充后导出的文件&…...

在项目中使用CancelToken选择性取消Axios请求

Axios 提供了 CancelToken 类来创建取消标记。取消标记实际上是一个包含 token 标记和 cancel 方法的对象。 1、基本使用方法 const CancelToken axios.CancelToken; const source CancelToken.source();axios.get(/user/12345, {cancelToken: source.token }).catch(functi…...

[c++] 记录一次引用使用不当导致的 bug

在工作中看到了如下代码&#xff0c;代码基于 std::thread 封装了一个 Thread 类。Thread 封装了业务开发中常用的接口&#xff0c;比如设置调度策略&#xff0c;设置优先级&#xff0c;设置线程名。如下代码删去了不必要的代码&#xff0c;只保留能说明问题的代码。从代码实现…...

能不能节约百分之九十的算力来训练模型

Sora是由OpenAI开发的视频生成模型&#xff0c;它采用了多种先进的技术和架构&#xff0c;能够根据文本描述生成长达一分钟的高清视频。虽然OpenAI并未公开Sora的详细模型架构和实现细节&#xff0c;但我们可以根据公开的信息和参考论文来了解其技术架构。 Sora的核心技术架构主…...

LeetCode206: 反转链表.

题目描述 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 解题方法 假设链表为 1→2→3→∅&#xff0c;我们想要把它改成∅←1←2←3。在遍历链表时&#xff0c;将当前节点的 next指针改为指向前一个节点。由于节点没有引用其前一…...

高级统计方法 第1次作业

概念 1. 请解释什么是P值&#xff0c;怎么计算p值&#xff0c;p值结果怎么理解&#xff0c;p值有哪些应用......&#xff1f; &#xff08;a&#xff09;什么是P值 P值是一种用来判定假设检验结果的一个参数&#xff0c;它描述了在原假设为真的情况下&#xff0c;比所得到的…...

spinalhdl,vivado,fpga

https://spinalhdl.github.io/SpinalDoc-RTD/master spinal hdl sudo apt install openjdk-17-jdk scala curl echo “deb https://repo.scala-sbt.org/scalasbt/debian all main” | sudo tee /etc/apt/sources.list.d/sbt.list echo “deb https://repo.scala-sbt.org/scal…...

Tomcat线程池原理(下篇:工作原理)

文章目录 前言正文一、执行线程的基本流程1.1 JUC中的线程池执行线程1.2 Tomcat 中线程池执行线程 二、被改造的阻塞队列2.1 TaskQueue的 offer(...)2.2 TaskQueue的 force(...) 三、总结 前言 Tomcat 线程池&#xff0c;是依据 JUC 中的线程池 ThreadPoolExecutor 重新自定义…...

【服务器数据恢复】通过reed-solomon算法恢复raid6数据的案例

服务器数据恢复环境&#xff1a; 一台网站服务器中有一组由6块磁盘组建的RAID6磁盘阵列&#xff0c;操作系统层面运行MySQL数据库和存放一些其他类型文件。 服务器故障&#xff1a; 该服务器在工作过程中&#xff0c;raid6磁盘阵列中有两块磁盘先后离线&#xff0c;不知道是管理…...

LeetCode 2583.二叉树中的第 K 大层和:层序遍历 + 排序

【LetMeFly】2583.二叉树中的第 K 大层和&#xff1a;层序遍历 排序 力扣题目链接&#xff1a;https://leetcode.cn/problems/kth-largest-sum-in-a-binary-tree/ 给你一棵二叉树的根节点 root 和一个正整数 k 。 树中的 层和 是指 同一层 上节点值的总和。 返回树中第 k …...

element ui 安装 简易过程 已解决

我之所以将Element归类为Vue.js&#xff0c;其主要原因是Element是&#xff08;饿了么团队&#xff09;基于MVVM框架Vue开源出来的一套前端ui组件。我最爱的就是它的布局容器&#xff01;&#xff01;&#xff01; 下面进入正题&#xff1a; 1、Element的安装 首先你需要创建…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...