【深度学习】Pytorch 教程(十二):PyTorch数据结构:4、张量操作(3):张量修改操作(拆分、拓展、修改)
文章目录
- 一、前言
- 二、实验环境
- 三、PyTorch数据结构
- 1、Tensor(张量)
- 1. 维度(Dimensions)
- 2. 数据类型(Data Types)
- 3. GPU加速(GPU Acceleration)
- 2、张量的数学运算
- 1. 向量运算
- 2. 矩阵运算
- 3. 向量范数、矩阵范数、与谱半径详解
- 4. 一维卷积运算
- 5. 二维卷积运算
- 6. 高维张量
- 3、张量的统计计算
- 4、张量操作
- 1. 张量变形
- 2. 索引
- 3. 切片
- 4. 张量修改
- a. 张量拆分
- split
- unbind
- chunk
- b. 张量扩展
- repeat
- cat
- stack
- c. 张量修改
- 使用索引和切片进行修改
- gather
- scatter
一、前言
本文将介绍PyTorch中张量的拆分(split、unbind、chunk)、拓展(repeat、cat、stack)、修改操作(使用索引和切片、gather、scatter)
二、实验环境
本系列实验使用如下环境
conda create -n DL python==3.11
conda activate DL
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
三、PyTorch数据结构
1、Tensor(张量)
Tensor(张量)是PyTorch中用于表示多维数据的主要数据结构,类似于多维数组,可以存储和操作数字数据。
1. 维度(Dimensions)
Tensor(张量)的维度(Dimensions)是指张量的轴数或阶数。在PyTorch中,可以使用size()方法获取张量的维度信息,使用dim()方法获取张量的轴数。
2. 数据类型(Data Types)
PyTorch中的张量可以具有不同的数据类型:
- torch.float32或torch.float:32位浮点数张量。
- torch.float64或torch.double:64位浮点数张量。
- torch.float16或torch.half:16位浮点数张量。
- torch.int8:8位整数张量。
- torch.int16或torch.short:16位整数张量。
- torch.int32或torch.int:32位整数张量。
- torch.int64或torch.long:64位整数张量。
- torch.bool:布尔张量,存储True或False。
【深度学习】Pytorch 系列教程(一):PyTorch数据结构:1、Tensor(张量)及其维度(Dimensions)、数据类型(Data Types)
3. GPU加速(GPU Acceleration)
【深度学习】Pytorch 系列教程(二):PyTorch数据结构:1、Tensor(张量): GPU加速(GPU Acceleration)
2、张量的数学运算
PyTorch提供了丰富的操作函数,用于对Tensor进行各种操作,如数学运算、统计计算、张量变形、索引和切片等。这些操作函数能够高效地利用GPU进行并行计算,加速模型训练过程。
1. 向量运算
【深度学习】Pytorch 系列教程(三):PyTorch数据结构:2、张量的数学运算(1):向量运算(加减乘除、数乘、内积、外积、范数、广播机制)
2. 矩阵运算
【深度学习】Pytorch 系列教程(四):PyTorch数据结构:2、张量的数学运算(2):矩阵运算及其数学原理(基础运算、转置、行列式、迹、伴随矩阵、逆、特征值和特征向量)
3. 向量范数、矩阵范数、与谱半径详解
【深度学习】Pytorch 系列教程(五):PyTorch数据结构:2、张量的数学运算(3):向量范数(0、1、2、p、无穷)、矩阵范数(弗罗贝尼乌斯、列和、行和、谱范数、核范数)与谱半径详解
4. 一维卷积运算
【深度学习】Pytorch 系列教程(六):PyTorch数据结构:2、张量的数学运算(4):一维卷积及其数学原理(步长stride、零填充pad;宽卷积、窄卷积、等宽卷积;卷积运算与互相关运算)
5. 二维卷积运算
【深度学习】Pytorch 系列教程(七):PyTorch数据结构:2、张量的数学运算(5):二维卷积及其数学原理
6. 高维张量
【深度学习】pytorch教程(八):PyTorch数据结构:2、张量的数学运算(6):高维张量:乘法、卷积(conv2d~ 四维张量;conv3d~五维张量)
3、张量的统计计算
【深度学习】Pytorch教程(九):PyTorch数据结构:3、张量的统计计算详解
4、张量操作
1. 张量变形
【深度学习】Pytorch教程(十):PyTorch数据结构:4、张量操作(1):张量变形操作
2. 索引
3. 切片
【深度学习】Pytorch 教程(十一):PyTorch数据结构:4、张量操作(2):索引和切片操作
4. 张量修改
a. 张量拆分
split
沿指定维度将张量拆分为多个张量
import torch# 创建一个张量
x = torch.tensor([[1, 2, 3], [4, 5, 6]])
y1, y2 = x.split(2, dim=1)
print(y1)
print(y2)
unbind
沿指定维度对张量进行拆分,返回拆分后的张量列表
import torchx = torch.tensor([[1, 2, 3], [4, 5, 6]])y1, y2 = x.unbind(dim=0)
print(y1)
print(y2)
chunk
沿指定维度将张量均匀分割为多个张量
import torch# 创建一个张量
x = torch.tensor([[1, 2, 3, 4, 5, 6]])# 沿指定维度均匀分割为多个张量
y = x.chunk(3, dim=1)
for chunk in y:print(chunk)
b. 张量扩展
repeat
复制张量中的元素进行重复操作
import torchx = torch.tensor([[1, 2, 3], [4, 5, 6]])# 重复操作
y = x.repeat(1, 2)
print(y)
z = x.repeat(2, 2)
print(z)
cat
沿指定维度对多个张量进行拼接
import torchx1 = torch.tensor([[1, 2, 3], [4, 5, 6]])
x2 = torch.tensor([[7, 8, 9], [10, 11, 12]])# 在指定维度上进行拼接
y = torch.cat((x1, x2), dim=0)
print(y)
stack
沿新的维度对多个张量进行堆叠
import torch# 创建两个张量
x1 = torch.tensor([[1, 2, 3], [4, 5, 6]])
x2 = torch.tensor([[7, 8, 9], [10, 11, 12]])# 在新维度上进行堆叠
y = torch.stack((x1, x2), dim=0)
print(y)
c. 张量修改
使用索引和切片进行修改
可以使用索引和切片操作来修改张量中的特定元素或子集
import torchx = torch.tensor([[1, 2, 3], [4, 5, 6]])
x[0, 1] = 9 # 修改第0行、第1列的元素为9
print(x)
- 输出:
tensor([[1, 9, 3],[4, 5, 6]])
gather
按指定索引从输入张量中收集指定维度的值
import torchx = torch.tensor([[1, 2, 3], [4, 5, 6]])# 按索引收集值
indices = torch.tensor([[0, 0, 1], [1, 0, 0]])
y = torch.gather(x, 1, indices)
print(y)
tensor([[1, 1, 2],[5, 4, 4]])
scatter
将值按指定索引散射到新张量中
import torchx = torch.zeros(2, 4)# 按索引散射值
indices = torch.tensor([[0, 1], [2, 3]])
values = torch.tensor([[1, 2], [3, 4]], dtype=torch.float)
y = x.scatter(1, indices, values)
print(y)
tensor([[1., 2., 0., 0.],[0., 0., 3., 4.]])
相关文章:

【深度学习】Pytorch 教程(十二):PyTorch数据结构:4、张量操作(3):张量修改操作(拆分、拓展、修改)
文章目录 一、前言二、实验环境三、PyTorch数据结构1、Tensor(张量)1. 维度(Dimensions)2. 数据类型(Data Types)3. GPU加速(GPU Acceleration) 2、张量的数学运算1. 向量运算2. 矩阵…...

适合新手博主站长使用的免费响应式WordPress博客主题JianYue
这款JianYue主题之所以命名为 JianYue,意思就是简单而不简约的。是根据Blogs主题优化而成,剔除了一些不必要的功能及排版,仅保留一种博客布局,让新手站长能够快速手上WordPress。可以说这款主题比较适合新手博主站长使用ÿ…...

FPGA OSERDESE2
Output Parallel-to-Serial Logic Resources (OSERDESE2) OSERDESE2 在Xilinx 7 系列器件是一款专用的并行至串行转换器,具有特定的时钟和逻辑资源,旨在促进高速源同步接口的实现。每个OSERDESE2模块都包括一个专用的数据串行器和 3 状态控制。数据和 3 态串行器都可以在 SD…...
如何卸载Erlang以及RabbitMQ
参考以下两篇文章 https://blog.csdn.net/m0_49605579/article/details/130196536 Windows如何完全卸载RabbitMQ和Erlang_删除注册表hkey_local_machine\software\ericsson\erlang\e-CSDN博客 首先我是按照链接一的操作进行了卸载,但是Erlang的安装目录一直删除不…...

ros自定义action记录
文章目录 自定义action1. 定义action文件2. 修改 package.xml3. 修改 CMakeLists.txt4. 运行 catkin build5. simple_action_server.py6. simple_action_client.py 测试 自定义action ros 版本:kinetic 自定义test包的文件结构如下 |-- test | |-- CMakeLists.t…...

挑战30天学完Python:Day18 正则表达式
📘 Day 18 🎉 本系列为Python基础学习,原稿来源于 30-Days-Of-Python 英文项目,大奇主要是对其本地化翻译、逐条验证和补充,想通过30天完成正儿八经的系统化实践。此系列适合零基础同学,或仅了解Python一点…...
力扣● 343. 整数拆分 ● 96.不同的二叉搜索树
● 343. 整数拆分 想不到,要勇于看题解。 关键在于理解递推公式。 1、DP数组及其下标的含义:dp[i]是分解i这个数得到的最大的乘积。 2、DP数组如何初始化:dp[0]和dp[1]都没意义,所以直接不赋值,初始化dp[2]1即可。…...

游戏同步+游戏中的网络模块
原文链接:游戏开发入门(九)游戏同步技术_游戏数据同步机制流程怎么开发-CSDN博客 游戏开发入门(十)游戏中的网络模块_游戏开发组网-CSDN博客 3.同步技术的基本常识: a.同步给谁?某个用户&…...

【03】逆序数组
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 一、逆序函数是什么? 二、逆序函数原码 1.直接逆序 2.创建临时数组逆序 三、结言 💥一、逆序函数是什么? 示例:输入1 4 …...

基于Prony算法的系统参数辨识matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 Prony算法是一种用于信号处理和系统辨识的经典方法,特别适用于线性时不变系统(LTI)的频率响应分析以及模拟复指数信号序列。其…...
创建第一个React项目
React脚手架 npx create-react-app react-demonpx是直接从互联网网上拉最新的脚手架进行创建react 运行React项目 npm start若想找到Webpack配置文件 npm ejectReact的基本使用 基本步骤 导入react和react-dom vue 创建react元素 渲染react元素到页面中导入 import React…...

Redis篇之Redis持久化的实现
持久化即把数据保存到可以永久保存的存储设备当中(磁盘)。因为Redis是基于内存存储数据的,一旦redis实例当即数据将会全部丢失,所以需要有某些机制将内存中的数据持久化到磁盘以备发生宕机时能够进行恢复,这一过程就称…...

dpdk环境搭建和工作原理
文章目录 1、DPDK环境搭建1.1、环境搭建1.2、编译DPDK 2、DPDK工作原理 1、DPDK环境搭建 1.1、环境搭建 工具准备:VMware、ubuntu16.04。 (1)VMware添加两个网卡。桥接网卡作为 DPDK 运行的网卡,NAT 网卡作为 ssh 连接的网卡。 …...

接口测试实战--自动化测试流程
一、项目前期准备 常见项目软件架构: springMvc:tomcat里运行war包(在webapps目录下) springboot:java -jar xx.jar -xms(**) 运行参数 springCloud:k8s部署,使用kubectl create -f xx.yaml 接口自动化测试介入需越早越好,只要api定义好就可以编写自动化脚本; 某个…...

babylonjs中文文档
经过咨询官方,文档已经添加了开源协议。 基于目前babylonjs没有中文文档,为了打造更好的babylonjs生态圈 ,特和小伙伴们翻译了官方文档。 相关链接: 欢迎加群:464146715 官方文档 中文文档 Babylonjs案例分享...

WordPress使用
WordPress功能菜单 仪表盘 可以查看网站基本信息和内容。 文章 用来管理文章内容,分类以及标签。编辑文章以及设置分类标签,分类和标签可以被添加到 外观-菜单 中。 分类名称自定义;别名为网页url链接中的一部分,最好别设置为中文…...

IDEA 2021.3激活
1、打开idea,在设置中查找Settings/Preferences… -> Plugins 内手动添加第三方插件仓库地址:https://plugins.zhile.io搜索:IDE Eval Reset 插件进行安装。应用和使用,如图...

进度条小程序
文章目录 铺垫回车换行缓冲区概述强制冲刷缓冲区 简单实现倒计时功能进度条小程序版本一实例代码效果展示分析 版本二 铺垫 回车换行 回车和换行是两个独立的动作 回车是将光标移动到当前行的最开始(最左侧) 换行是竖直向下平移一行 在C语言中&…...

K8S安装部署
常见的K8S安装部署方式 Minikube Minikube是一个工具,可以在本地快速运行一个单节点微型K8S,仅用于学习、预览K8S的一些特性使用。 部署地址:Install Tools | Kubernetes Kubeadm Kubeadm也是一个工具,提供kubeadm init和kube…...

AI大模型与小模型之间的“脱胎”与“反哺”(第一篇)
一、AI小模型脱胎于AI大模型,而AI小模型群又可以反哺AI大模型 AI大模型(如GPT、BERT等)通常拥有大量的参数和训练数据,能够生成或理解复杂的文本内容。这些大模型在训练完成后,可以通过剪枝、微调等方式转化为小模型&…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...

【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程
STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)
UniApp 集成腾讯云 IM 富媒体消息全攻略(地理位置/文件) 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型,核心实现方式: 标准消息类型:直接使用 SDK 内置类型(文件、图片等)自…...