当前位置: 首页 > news >正文

基于文本提示和语义分割的快速抠图

基于文本提示和语义分割的快速抠图

    • 1. 介绍
    • 2. 效果展示
    • 3. 安装模型
    • 4. 命令行调用
    • 5. 代码调用
      • 5.1 模型加载
      • 5.2 可视化函数定义
      • 5.3 图像语义分割
    • 6. 参考资料
    • 7. 结语
    • 服务

1. 介绍

传统的图像语义分割模型通常固定类别进行分割,而基于文本提示的语义分割模型则具有更高的灵活性。本文介绍的模型允许用户通过输入文本标签来手动控制分割的类别信息,从而实现快速抠图的需求。

2. 效果展示

通过控制文本标签,模型能够快速、精准地抠出特定物体,以下是部分抠图效果展示:

在这里插入图片描述

3. 安装模型

使用 PaddleHub 可以便捷地安装该语义分割模型:

!pip install --upgrade paddlenlp
!hub install lseg

4. 命令行调用

通过简单的命令行指令即可快速调用模型进行抠图:

!hub run lseg \--input_path "images/cat.jpeg" \--labels 'cat' 'other' \--output_dir "lseg_output"

文本标签支持中英文,模型会自动翻译至英文输入。

5. 代码调用

5.1 模型加载

import paddlehub as hubmodule = hub.Module(name="lseg")

5.2 可视化函数定义

import cv2
import numpy as np
from PIL import Imagedef vis(results):result = np.concatenate([results['color'], results['mix']], 1)return Image.fromarray(result[:, :, ::-1])

5.3 图像语义分割

# 定义图像路径 / 类别 / 保存路径
image_path = 'images/cat.jpeg'
labels = ['plant', 'grass', 'cat', 'stone', 'other']
output_dir = 'lseg_output'# 图像分割
results = module.segment(image=image_path,labels=labels,visualization=True,output_dir=output_dir
)# 可视化
vis(results)

或者直接使用 numpy.ndarray BGR 格式的图像:

# 定义图像路径 / 类别 / 保存路径
image_path = 'images/cat.jpeg'
labels = ['plant', 'grass', 'cat', 'stone', 'other']
output_dir = 'lseg_output'# 图像分割
results = module.segment(image=cv2.imread(image_path),labels=labels,visualization=True,output_dir=output_dir
)# 可视化
vis(results)

6. 参考资料

  • 论文:Language-driven Semantic Segmentation
  • 官方实现:isl-org/lang-seg
  • AIStudio 介绍:Lang-Seg:文本驱动的图像语义分割

7. 结语

以上是基于文本提示的语义分割快速抠图模型的介绍与实践。希望本文能够对您有所帮助,若有任何疑问或建议,欢迎留言交流!

服务

🛠 博主提供一站式解决方案,让您的工作变得更加轻松、高效!以下是我们提供的服务:

  1. 代部署

    🚀 为您提供快速、稳定的部署方案。无论是您的应用程序、网站还是其他软件项目,我们都可以帮助您将其部署到适当的平台上。

  2. 课程设计选题

    📚 为您量身定制符合课程要求和学生需求的选题方案。无论是基础课程还是高级课程,我们都能够为您提供专业的建议和支持。

  3. 线上辅导

    💻 提供线上辅导服务,为您提供个性化的指导和支持,帮助您解决在学习、工作或研究中遇到的各种问题和困难。
    如有需求,请随时私信

相关文章:

基于文本提示和语义分割的快速抠图

基于文本提示和语义分割的快速抠图 1. 介绍2. 效果展示3. 安装模型4. 命令行调用5. 代码调用5.1 模型加载5.2 可视化函数定义5.3 图像语义分割 6. 参考资料7. 结语服务 1. 介绍 传统的图像语义分割模型通常固定类别进行分割,而基于文本提示的语义分割模型则具有更高…...

什么是媒体发稿?发稿媒体分类及发稿流程

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 媒体发稿是一种企业推广和宣传的手段,通过媒体渠道传递企业信息和形象。 媒体发稿的含义在于,当企业有新闻、事件或其他消息需要对外公布时,可以选择…...

安全测试自学手册之软件安全测试基础

安全测试的概念 定义:指有关验证应用程序的安全等级和识别潜在安全性缺陷的过程。】 应用软件的安全性测试:软件自身设计中存在的安全隐患,并检查软件对非法入侵的防御能力。系统级别的安全性测试:确保只有具备系统平台访问权限…...

【LeetCode】升级打怪之路 Day 04:链表 part 2

今日题目: 24. 两两交换链表中的节点19. 删除链表的倒数第 N 个结点160. 相交链表142. 环形链表 II 目录 LeetCode 24. 两两交换链表中的节点 【易错】LeetCode 19. 删除链表的倒数第 N 个结点 【还行】LeetCode 160. 相交链表(两个链表是否相交&#xf…...

JAVA编程题系列——涵盖几乎所有java内容

自己定义一个类,有static属性和构造方法,有构造方法重载,有其他方法(方法有对String类型操作) public class MyClass {// 静态属性public static String staticProperty "Static Property";// 成员变量priv…...

【Android12】Monkey压力测试源码执行流程分析

Monkey压力测试源码执行流程分析 Monkey是Android提供的用于应用程序自动化测试、压力测试的测试工具。 其源码路径(Android12)位于 /development/cmds/monkey/部署形式为Java Binary # development/cmds/monkey/Android.bp // Copyright 2008 The Android Open Source Proj…...

Java架构师之路八、安全技术:Web安全、网络安全、系统安全、数据安全等

目录 Web安全: 网络安全: 系统安全: 数据安全: Java架构师之路七、大数据:Hadoop、Spark、Hive、HBase、Kafka等-CSDN博客Java架构师之路九、设计模式:常见的设计模式,如单例模式、工厂模式…...

Codeforces Round 240 (Div. 1) C. Mashmokh and Reverse Operation(分治+逆序对)

原题链接:C. Mashmokh and Reverse Operation 题目大意: 给出一个长度为 2 n 2^{n} 2n 的正整数数组 a a a ,再给出 m m m 次操作。 每次操作给出一个数字 q q q ,把数组分为 2 n − q 2^{n-q} 2n−q 个长度为 2 q 2^{q} 2…...

SpringBoot源码解读与原理分析(三十二)SpringBoot整合JDBC(一)JDBC组件的自动装配

文章目录 前言第10章 SpringBoot整合JDBC10.1 SpringBoot整合JDBC的项目搭建10.1.1 初始化数据库10.1.2 整合项目10.1.2.1 导入JDBC和MySQL驱动依赖10.1.2.2 配置数据源 10.1.3 编写业务代码10.1.3.1 编写与t_user表对应的实体类User10.1.3.2 编写Dao层代码10.1.3.3 编写Servic…...

petalinux_zynq7 驱动DAC以及ADC模块之五:nodejs+vue3实现web网页波形显示

前文: petalinux_zynq7 C语言驱动DAC以及ADC模块之一:建立IPhttps://blog.csdn.net/qq_27158179/article/details/136234296petalinux_zynq7 C语言驱动DAC以及ADC模块之二:petalinuxhttps://blog.csdn.net/qq_27158179/article/details/1362…...

Android java中内部类的使用

一.成员内部类 实验1:成员内部类 class Outer {private int a 10;class Inner {public void printInfo(){System.out.println("a "a);}}}public class InnerDemo {public static void main(String args[]) {Outer o new Outer();Outer.Inner i o.new…...

llm的inference(二)

文章目录 Tokenizer分词1.单词分词法2.单字符分词法3.子词分词法BPE(字节对编码,Byte Pair Encoding)WordPieceUnigram Language Model(ULM) embedding的本质推理时的一些指标参考链接 Tokenizer 在使用模型前,都需要将sequence过一遍Tokenizer&#xf…...

pytorch -- torch.nn.Module

基础 torch.nn 是 PyTorch 中用于构建神经网络的模块。nn.Module包含网络各层的定义及forward方法。 在用户自定义神经网络时,需要继承自nn.Module类。通过继承 nn.Module 类,您可以创建自己的神经网络模型,并定义模型的结构和操作。 torch.n…...

Microsoft Edge 越用越慢、超级卡顿?网页B站播放卡顿?

记录10个小妙招 Microsoft Edge 启动缓慢、菜单导航卡顿、浏览响应沉闷?这些情况可能是由于系统资源不足或浏览器没及时更新引起的。接下来,我们将介绍 10 种简单的方法,让 Edge 浏览器的速度重新起飞。 基础检查与问题解决 如果 Microsoft…...

XGB-9: 分类数据

从1.5版本开始&#xff0c;XGBoost Python包为公共测试提供了对分类数据的实验性支持。对于数值数据&#xff0c;切分条件被定义为 v a l u e < t h r e s h o l d value < threshold value<threshold &#xff0c;而对于分类数据&#xff0c;切分的定义取决于是否使用…...

FreeRTOS学习第8篇--同步和互斥操作引子

目录 FreeRTOS学习第8篇--同步和互斥操作引子同步和互斥概念实现同步和互斥的机制PrintTask_Task任务相关代码片段CalcTask_Task任务相关代码片段实验现象本文中使用的测试工程 FreeRTOS学习第8篇–同步和互斥操作引子 本文目标&#xff1a;学习与使用FreeRTOS中的同步和互斥操…...

c++STL容器的使用(vector, list, map, set等),c++STL算法的理解与使用(sort, find, binary_search等)

cSTL容器的使用&#xff08;vector, list, map, set等&#xff09; 在C的STL&#xff08;Standard Template Library&#xff09;中&#xff0c;容器是重要的一部分&#xff0c;它们提供了各种数据结构来存储和管理数据。以下是一些常见的STL容器及其使用方法的简要说明&#x…...

选择VR全景行业,需要了解哪些内容?

近年来&#xff0c;随着虚拟现实、增强现实等技术的持续发展&#xff0c;VR全景消费市场得以稳步扩张。其次&#xff0c;元宇宙行业的高速发展&#xff0c;也在进一步拉动VR全景技术的持续进步&#xff0c;带动VR产业的高质量发展。作为一种战略性的新兴产业&#xff0c;国家和…...

830. 单调栈

Problem: 830. 单调栈 文章目录 思路解题方法复杂度Code 思路 这是一个单调栈的问题。单调栈是一种特殊的栈结构&#xff0c;它的特点是栈中的元素保持单调性。在这个问题中&#xff0c;我们需要找到每个元素左边第一个比它小的元素&#xff0c;这就需要使用到单调递增栈。 我们…...

H5 个人引导页官网型源码

H5 个人引导页官网型源码 源码介绍&#xff1a;源码无后台、无数据库&#xff0c;H5自检测适应、无加密&#xff0c;直接修改可用。 源码含有多选项&#xff0c;多功能。可展示自己站点、团队站点。手机电脑双端。 下载地址&#xff1a; https://www.changyouzuhao.cn/1434.…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发&#xff0c;实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构&#xff0c;服务器端使用Java Servlet处理请求&#xff0c;数据库采用MySQL存储信息&#xff0…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...