Kubernetes/k8s的核心概念
一、什么是 Kubernetes
Kubernetes,从官方网站上可以看到,它是一个工业级的容器编排平台。Kubernetes 这个单词是希腊语,它的中文翻译是“舵手”或者“飞行员”。在一些常见的资料中也会看到“ks”这个词,也就是“k8s”,它是通过将8个字母“ubernete ”替换为“8”而导致的一个缩写。
Kubernetes 为什么要用“舵手”来命名呢?大家可以看一下这张图:

这是一艘载着一堆集装箱的轮船,轮船在大海上运着集装箱奔波,把集装箱送到它们该去的地方。我们之前其实介绍过一个概念叫做 container,container 这个英文单词也有另外的一个意思就是“集装箱”。Kubernetes 也就借着这个寓意,希望成为运送集装箱的一个轮船,来帮助我们管理这些集装箱,也就是管理这些容器。
这个就是为什么会选用 Kubernetes 这个词来代表这个项目的原因。更具体一点地来说:Kubernetes 是一个自动化的容器编排平台,它负责应用的部署、应用的弹性以及应用的管理,这些都是基于容器的。
二、Kubernetes 有如下几个核心的功能:
-
服务的发现与负载的均衡;
-
容器的自动装箱,我们也会把它叫做 scheduling,就是“调度”,把一个容器放到一个集群的某一个机器上,Kubernetes 会帮助我们去做存储的编排,让存储的声明周期与容器的生命周期能有一个连接;
-
Kubernetes 会帮助我们去做自动化的容器的恢复。在一个集群中,经常会出现宿主机的问题或者说是 OS 的问题,导致容器本身的不可用,Kubernetes 会自动地对这些不可用的容器进行恢复;
-
Kubernetes 会帮助我们去做应用的自动发布与应用的回滚,以及与应用相关的配置密文的管理;
-
对于 job 类型任务,Kubernetes 可以去做批量的执行;
-
为了让这个集群、这个应用更富有弹性,Kubernetes 也支持水平的伸缩。

1、调度
Kubernetes 可以把用户提交的容器放到 Kubernetes 管理的集群的某一台节点上去。Kubernetes 的调度器是执行这项能力的组件,它会观察正在被调度的这个容器的大小、规格。
比如说它所需要的 CPU以及它所需要的 memory,然后在集群中找一台相对比较空闲的机器来进行一次 placement,也就是一次放置的操作。在这个例子中,它可能会把红颜色的这个容器放置到第二个空闲的机器上,来完成一次调度的工作。

2、自动修复
Kubernetes 有一个节点健康检查的功能,它会监测这个集群中所有的宿主机,当宿主机本身出现故障,或者软件出现故障的时候,这个节点健康检查会自动对它进行发现。
下面 Kubernetes 会把运行在这些失败节点上的容器进行自动迁移,迁移到一个正在健康运行的宿主机上,来完成集群内容器的一个自动恢复。

3、水平伸缩
Kubernetes 有业务负载检查的能力,它会监测业务上所承担的负载,如果这个业务本身的 CPU 利用率过高,或者响应时间过长,它可以对这个业务进行一次扩容。
比如说在下面的例子中,黄颜色的过度忙碌,Kubernetes 就可以把黄颜色负载从一份变为三份。接下来,它就可以通过负载均衡把原来打到第一个黄颜色上的负载平均分到三个黄颜色的负载上去,以此来提高响应的时间。

三、Kubernetes 的架构
Kubernetes 架构是一个比较典型的二层架构和 server-client 架构。Master 作为中央的管控节点,会去与 Node 进行一个连接。
所有 UI 的、clients、这些 user 侧的组件,只会和 Master 进行连接,把希望的状态或者想执行的命令下发给 Master,Master 会把这些命令或者状态下发给相应的节点,进行最终的执行。

Kubernetes 的 Master 包含四个主要的组件:API Server、Controller、Scheduler 以及 etcd。如下图所示:

-
API Server:顾名思义是用来处理 API 操作的,Kubernetes 中所有的组件都会和 API Server 进行连接,组件与组件之间一般不进行独立的连接,都依赖于 API Server 进行消息的传送;
-
Controller:是控制器,它用来完成对集群状态的一些管理。比如刚刚我们提到的两个例子之中,第一个自动对容器进行修复、第二个自动进行水平扩张,都是由 Kubernetes 中的 Controller 来进行完成的;
-
Scheduler:是调度器,“调度器”顾名思义就是完成调度的操作,就是我们刚才介绍的第一个例子中,把一个用户提交的 Container,依据它对 CPU、对 memory 请求大小,找一台合适的节点,进行放置;
-
etcd:是一个分布式的一个存储系统,API Server 中所需要的这些原信息都被放置在 etcd 中,etcd 本身是一个高可用系统,通过 etcd 保证整个 Kubernetes 的 Master 组件的高可用性。
我们刚刚提到的 API Server,它本身在部署结构上是一个可以水平扩展的一个部署组件;Controller 是一个可以进行热备的一个部署组件,它只有一个 active,它的调度器也是相应的,虽然只有一个 active,但是可以进行热备。
Kubernetes 的架构:Node
Kubernetes 的 Node 是真正运行业务负载的,每个业务负载会以 Pod 的形式运行。等一下我会介绍一下 Pod 的概念。一个 Pod 中运行的一个或者多个容器,真正去运行这些 Pod 的组件的是叫做 kubelet,也就是 Node 上最为关键的组件,它通过 API Server 接收到所需要 Pod 运行的状态,然后提交到我们下面画的这个 Container Runtime 组件中。

在 OS 上去创建容器所需要运行的环境,最终把容器或者 Pod 运行起来,也需要对存储跟网络进行管理。Kubernetes 并不会直接进行网络存储的操作,他们会靠 Storage Plugin 或者是网络的 Plugin 来进行操作。用户自己或者云厂商都会去写相应的 Storage Plugin 或者 Network Plugin,去完成存储操作或网络操作。
在 Kubernetes 自己的环境中,也会有 Kubernetes 的 Network,它是为了提供 Service network 来进行搭网组网的。(等一下我们也会去介绍“service”这个概念。)真正完成 service 组网的组件的是 Kube-proxy,它是利用了 iptable 的能力来进行组建 Kubernetes 的 Network,就是 cluster network,以上就是 Node 上面的四个组件。
Kubernetes 的 Node 并不会直接和 user 进行 interaction,它的 interaction 只会通过 Master。而 User 是通过 Master 向节点下发这些信息的。Kubernetes 每个 Node 上,都会运行我们刚才提到的这几个组件。
下面我们以一个例子再去看一下 Kubernetes 架构中的这些组件,是如何互相进行 interaction 的。

用户可以通过 UI 或者 CLI 提交一个 Pod 给 Kubernetes 进行部署,这个 Pod 请求首先会通过 CLI 或者 UI 提交给 Kubernetes API Server,下一步 API Server 会把这个信息写入到它的存储系统 etcd,之后 Scheduler 会通过 API Server 的 watch 或者叫做 notification 机制得到这个信息:有一个 Pod 需要被调度。
这个时候 Scheduler 会根据它的内存状态进行一次调度决策,在完成这次调度之后,它会向 API Server report 说:“OK!这个 Pod 需要被调度到某一个节点上。”
这个时候 API Server 接收到这次操作之后,会把这次的结果再次写到 etcd 中,然后 API Server 会通知相应的节点进行这次 Pod 真正的执行启动。相应节点的 kubelet 会得到这个通知,kubelet 就会去调 Container runtime 来真正去启动配置这个容器和这个容器的运行环境,去调度 Storage Plugin 来去配置存储,network Plugin 去配置网络。
这个例子我们可以看到:这些组件之间是如何相互沟通相互通信,协调来完成一次Pod的调度执行操作的。
四、Kubernetes 的核心概念
核心概念
第一个概念:Pod
Pod 是 Kubernetes 的一个最小调度以及资源单元。用户可以通过 Kubernetes 的 Pod API 生产一个 Pod,让 Kubernetes 对这个 Pod 进行调度,也就是把它放在某一个 Kubernetes 管理的节点上运行起来。一个 Pod 简单来说是对一组容器的抽象,它里面会包含一个或多个容器。
比如像下面的这幅图里面,它包含了两个容器,每个容器可以指定它所需要资源大小。比如说,一个核一个 G,或者说 0.5 个核,0.5 个 G。
当然在这个 Pod 中也可以包含一些其他所需要的资源:比如说我们所看到的 Volume 卷这个存储资源;比如说我们需要 100 个 GB 的存储或者 20GB 的另外一个存储。

在 Pod 里面,我们也可以去定义容器所需要运行的方式。比如说运行容器的 Command,以及运行容器的环境变量等等。Pod 这个抽象也给这些容器提供了一个共享的运行环境,它们会共享同一个网络环境,这些容器可以用 localhost 来进行直接的连接。而 Pod 与 Pod 之间,是互相有 isolation 隔离的。
第二个概念:Volume
Volume 就是卷的概念,它是用来管理 Kubernetes 存储的,是用来声明在 Pod 中的容器可以访问文件目录的,一个卷可以被挂载在 Pod 中一个或者多个容器的指定路径下面。
而 Volume 本身是一个抽象的概念,一个 Volume 可以去支持多种的后端的存储。比如说 Kubernetes 的 Volume 就支持了很多存储插件,它可以支持本地的存储,可以支持分布式的存储,比如说像 ceph,GlusterFS ;它也可以支持云存储,比如说阿里云上的云盘、AWS 上的云盘、Google 上的云盘等等。

第三个概念:Deployment
Deployment 是在 Pod 这个抽象上更为上层的一个抽象,它可以定义一组 Pod 的副本数目、以及这个 Pod 的版本。一般大家用 Deployment 这个抽象来做应用的真正的管理,而 Pod 是组成 Deployment 最小的单元。
Kubernetes 是通过 Controller,也就是我们刚才提到的控制器去维护 Deployment 中 Pod 的数目,它也会去帮助 Deployment 自动恢复失败的 Pod。
比如说我可以定义一个 Deployment,这个 Deployment 里面需要两个 Pod,当一个 Pod 失败的时候,控制器就会监测到,它重新把 Deployment 中的 Pod 数目从一个恢复到两个,通过再去新生成一个 Pod。通过控制器,我们也会帮助完成发布的策略。比如说进行滚动升级,进行重新生成的升级,或者进行版本的回滚。

第四个概念:Service
Service 提供了一个或者多个 Pod 实例的稳定访问地址。
比如在上面的例子中,我们看到:一个 Deployment 可能有两个甚至更多个完全相同的 Pod。对于一个外部的用户来讲,访问哪个 Pod 其实都是一样的,所以它希望做一次负载均衡,在做负载均衡的同时,我只想访问某一个固定的 VIP,也就是 Virtual IP 地址,而不希望得知每一个具体的 Pod 的 IP 地址。
我们刚才提到,这个 pod 本身可能 terminal go(终止),如果一个 Pod 失败了,可能会换成另外一个新的。
对一个外部用户来讲,提供了多个具体的 Pod 地址,这个用户要不停地去更新 Pod 地址,当这个 Pod 再失败重启之后,我们希望有一个抽象,把所有 Pod 的访问能力抽象成一个第三方的一个 IP 地址,实现这个的 Kubernetes 的抽象就叫 Service。
实现 Service 有多种方式,Kubernetes 支持 Cluster IP,上面我们讲过的 kuber-proxy 的组网,它也支持 nodePort、 LoadBalancer 等其他的一些访问的能力。

第五个概念:Namespace
Namespace 是用来做一个集群内部的逻辑隔离的,它包括鉴权、资源管理等。Kubernetes 的每个资源,比如刚才讲的 Pod、Deployment、Service 都属于一个 Namespace,同一个 Namespace 中的资源需要命名的唯一性,不同的 Namespace 中的资源可以重名。
Namespace 一个用例,比如像在阿里巴巴,我们内部会有很多个 business units,在每一个 business units 之间,希望有一个视图上的隔离,并且在鉴权上也不一样,在 cuda 上面也不一样,我们就会用 Namespace 来去给每一个 BU 提供一个他所看到的这么一个看到的隔离的机制。

相关文章:
Kubernetes/k8s的核心概念
一、什么是 Kubernetes Kubernetes,从官方网站上可以看到,它是一个工业级的容器编排平台。Kubernetes 这个单词是希腊语,它的中文翻译是“舵手”或者“飞行员”。在一些常见的资料中也会看到“ks”这个词,也就是“k8s”ÿ…...
vue 前端预览 Excel 表
一、安装依赖包官网 npm i luckyexceltemplate 模板 <!-- 用于渲染表格的容器 --> <div id"luckysheet" stylewidth:100vw;height:100vh></div>二、加载 异步加载及 import LuckyExcel from luckyexcel;/* 下列代码加载 cdn 文件,你…...
【JS】生成N位随机数
作用 用于邮箱验证码 码 ramNum.js /*** 生成N位随机数字* param {Number} l 默认:6,默认生成6位随机数字* returns 返回N位随机数字*/ const ramNum (l 6) > {let num for (let i 0; i < l; i) {const n Math.random()const str String(n…...
2024年FPGA可以进吗
2024年,IC设计FPGA行业仍有可能是一个极具吸引力和活力的行业,主要原因包括: 1. 技术发展趋势:随着5G、人工智能、物联网、自动驾驶、云计算等高新技术的快速发展和广泛应用,对集成电路尤其是高性能、低功耗、定制化芯…...
小程序图形:echarts-weixin 入门使用
去官网下载整个项目: https://github.com/ecomfe/echarts-for-weixin 拷贝ec-canvs文件夹到小程序里面 index.js里面的写法 import * as echarts from "../../components/ec-canvas/echarts" const app getApp(); function initChart(canvas, width, h…...
百度百科人物创建要求是什么?
百度百科作为我国最大的中文百科全书,其收录的人物词条要求严谨、客观、有权威性。那么,如何撰写一篇高质量的人物词条呢?本文伯乐网络传媒将从内容要求、注意事项以及创建流程与步骤三个方面进行详细介绍。 一、内容要求 1. 基本信息&#…...
练习2-线性回归迭代(李沐函数简要解析)
环境:再练习1中 视频链接:https://www.bilibili.com/video/BV1PX4y1g7KC/?spm_id_from333.999.0.0 代码与详解 数据库 numpy 数据处理处理 torch.utils 数据加载与数据 d2l 专门的库 nn 包含各种层与激活函数 import numpy as np import torch from torch.utils import da…...
人像背景分割SDK,智能图像处理
美摄科技人像背景分割SDK解决方案:引领企业步入智能图像处理新时代 随着科技的不断进步,图像处理技术已成为许多行业不可或缺的一部分。为了满足企业对于高质量、高效率人像背景分割的需求,美摄科技推出了一款领先的人像背景分割SDK…...
100M服务器能同时容纳多少人访问
100M服务器的并发容纳人数会受到多种因素的影响,这些因素包括单个用户的平均访问流量大小、每个用户的平均访问页面数、并发用户比例、服务器和网络的流量利用率以及服务器自身的处理能力。 点击以下任一云产品链接,跳转后登录,自动享有所有…...
Mysql 的高可用详解
Mysql 高可用 复制 复制是解决系统高可用的常见手段。其思路就是:不要把鸡蛋都放在一个篮子里。 复制解决的基本问题是让一台服务器的数据与其他服务器保持同步。一台主库的数据可以同步到多台备库上,备库本身也可以被配置成另外一台服务器的主库。主…...
Acwing枚举、模拟与排序(一)
连号区间数 原题链接:https://www.acwing.com/problem/content/1212/ 初始最小值和最大值的依据是题目给出的数据范围。只要在数据范围之外就可以。 连号的时候,相邻元素元素之间,差值为1。那么区间右边界和左边界,的值的差&#…...
MySQL的主从同步原理
MySQL的主从同步(也称为复制)是一种数据同步技术,用于将一个MySQL服务器(主服务器)上的数据和变更实时复制到另一个或多个MySQL服务器(从服务器)。这项技术支持数据备份、读写分离、故障恢复等多…...
naive-ui-admin 表格去掉工具栏toolbar
使用naive-ui-admin的时候,有时候不需要显示工具栏,工具栏太占地方了。 1.在src/components/Table/src/props.ts 里面添加属性 showToolbar 默认显示,在不需要的地方传false。也可以默认不显示 ,这个根据需求来。 2.在src/compo…...
C++之结构体
结构体 //一、结构体的概念、定义和使用 // 概念:结构体属于用户自定义的数据类型,允许用户存储不同的数据类型 #include<iostream> using namespace std; #include<string> //1.创建学生数据类型:学生包括(姓名&am…...
分布式ID选型对比(1)
常见的几种ID生成方式对比: 种类 全局唯一 高性能 高可用 趋势递增 中心服务 缺点 UUID 是 高(本地生成,(无网络开销) 低(无序,不适用) 否 否 无序、字符串 数据库自增 单表唯一 中 中(宕机就会使业务服务中断) 是 否 安全性差,能猜出来规律 对于分库分表场景无法唯一 数据库自…...
T-SQL 高阶语法之存储过程
一:存储过程概念 预先存储好的sql程序,通过名称和参数进行执行,供应程序去调用,也可以有返回结果,存储过程可以包含sql语句 可以包含流程控制、逻辑语句等。 二:存储过程的优点 执行速度更快 允许模块化…...
解决鸿蒙模拟器卡顿的问题
缘起 最近在学习鸿蒙的时候,发现模拟器非常卡,不要说体验到鸿蒙的丝滑,甚至到严重影响使用的程度。 根据我开发Android的经验和在论坛翻了一圈,最终总结出了以下几个方案。 创建模拟器 1、在DevEco Virtual Device Configurat…...
【LeetCode每日一题】【BFS模版与例题】863.二叉树中所有距离为 K 的结点
BFS的基本概念 BFS 是广度优先搜索(Breadth-First Search)的缩写,是一种图遍历算法。它从给定的起始节点开始,逐层遍历图中的节点,直到遍历到目标节点或者遍历完所有可达节点。 BFS 算法的核心思想是先访问当前节点的…...
设计模式-结构模式-装饰模式
装饰模式(Decorator Pattern):动态地给一个对象增加一些额外的职责,就增加对象功能来说,装饰模式比生成子类实现更为灵活。装饰模式是一种对象结构型模式。 //首先,定义一个组件接口: public in…...
MySQL:一行记录如何
1、表空间文件结构 表空间由段「segment」、区「extent」、页「page」、行「row」组成,InnoDB存储引擎的逻辑存储结构大致如下图: 行 数据库表中的记录都是按「行」进行存放的,每行记录根据不同的行格式,有不同的存储结构。 页…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
AI语音助手的Python实现
引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...
Android写一个捕获全局异常的工具类
项目开发和实际运行过程中难免会遇到异常发生,系统提供了一个可以捕获全局异常的工具Uncaughtexceptionhandler,它是Thread的子类(就是package java.lang;里线程的Thread)。本文将利用它将设备信息、报错信息以及错误的发生时间都…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...
