当前位置: 首页 > news >正文

力扣601 体育馆的人流量

        在解决"连续三天及以上人流量超过100的记录"问题时,MySQL方案作为力扣解决问题的方案通过窗口函数和分组技巧高效地识别连续记录。而Python与Pandas方案作为扩展则展示了在数据处理和分析方面的灵活性,通过行号变换和分组计数来筛选符合条件的数据行。

目录

题目描述

解题思路

完整代码

使用python- pandas扩展


题目描述

表:Stadium

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| id            | int     |
| visit_date    | date    |
| people        | int     |
+---------------+---------+
visit_date 是该表中具有唯一值的列。
每日人流量信息被记录在这三列信息中:序号 (id)、日期 (visit_date)、 人流量 (people)
每天只有一行记录,日期随着 id 的增加而增加

编写解决方案找出每行的人数大于或等于 100 且 id 连续的三行或更多行记录。

返回按 visit_date 升序排列 的结果表。

查询结果格式如下所示。

示例 1:

输入:
Stadium 表:
+------+------------+-----------+
| id   | visit_date | people    |
+------+------------+-----------+
| 1    | 2017-01-01 | 10        |
| 2    | 2017-01-02 | 109       |
| 3    | 2017-01-03 | 150       |
| 4    | 2017-01-04 | 99        |
| 5    | 2017-01-05 | 145       |
| 6    | 2017-01-06 | 1455      |
| 7    | 2017-01-07 | 199       |
| 8    | 2017-01-09 | 188       |
+------+------------+-----------+
输出:
+------+------------+-----------+
| id   | visit_date | people    |
+------+------------+-----------+
| 5    | 2017-01-05 | 145       |
| 6    | 2017-01-06 | 1455      |
| 7    | 2017-01-07 | 199       |
| 8    | 2017-01-09 | 188       |
+------+------------+-----------+
解释:
id 为 5、6、7、8 的四行 id 连续,并且每行都有 >= 100 的人数记录。
请注意,即使第 7 行和第 8 行的 visit_date 不是连续的,输出也应当包含第 8 行,因为我们只需要考虑 id 连续的记录。
不输出 id 为 2 和 3 的行,因为至少需要三条 id 连续的记录。

解题思路

  1. 标记符合条件的行:首先,我们需要找出people大于等于100的行。
  2. 寻找连续的行:接着,我们需要找出这些行中id连续的部分。这一步稍微复杂,因为我们需要检查每行的id是否与前一行的id相差1。
  3. 统计连续行的数量:为了确保连续行至少有三行,我们可以使用窗口函数(如ROW_NUMBER())来为这些连续行分组,并计算每组中的行数。
  4. 筛选结果:最后,我们只保留那些组内行数大于等于3的行。

完整代码

WITH RankedStadium AS (SELECT id, visit_date, people,-- 为连续的行分配相同的组号id - ROW_NUMBER() OVER (ORDER BY id) AS grpFROM StadiumWHERE people >= 100
),
GroupedStadium AS (SELECTid,visit_date,people,grp,-- 计算每个组内的行数COUNT(*) OVER (PARTITION BY grp) AS cntFROMRankedStadium
)-- 选择那些组内行数大于等于3的记录
SELECT id, visit_date, people
FROM GroupedStadium
WHERE cnt >= 3
ORDER BY visit_date;

        这段代码通过WITH语句先创建了一个临时的RankedStadium视图来找出人数大于等于100的行,并为连续的行分配相同的组号。然后在GroupedStadium视图中,它计算每个组内的行数。最后,它选择那些组内行数大于等于3的记录,并按visit_date排序。这样就能找到至少有三行连续idpeople大于等于100的记录。

通过

使用python- pandas扩展

  1. 筛选符合条件的行:首先,我们需要筛选出people字段大于等于100的行。
  2. 寻找连续的行:然后,我们需要找到id连续的行。由于id是连续增加的,我们可以通过检查当前行的id是否比前一行的id大1来判断是否连续。
  3. 标记连续的组:为了识别连续的行,我们可以用id减去行号来为每个连续的块创建一个唯一的标识符。
  4. 统计每组的行数:通过分组并统计每个组的行数,我们可以找出至少包含3行的组。
  5. 筛选结果:最后,我们筛选出那些组内行数大于等于3的行。
import pandas as pd# 假设stadium_df是包含Stadium表数据的DataFrame
stadium_df = pd.DataFrame({'id': [1, 2, 3, 4, 5, 6, 7, 8],'visit_date': ['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05', '2017-01-06', '2017-01-07', '2017-01-09'],'people': [10, 109, 150, 99, 145, 1455, 199, 188]
})# 筛选people大于等于100的行
filtered_df = stadium_df[stadium_df['people'] >= 100]# 通过id减去行号创建组标识符
filtered_df['group'] = filtered_df['id'] - filtered_df.reset_index().index# 计算每组的行数
group_counts = filtered_df.groupby('group').size()# 筛选出组内行数大于等于3的组
valid_groups = group_counts[group_counts >= 3].index# 最终结果
result_df = filtered_df[filtered_df['group'].isin(valid_groups)].drop('group', axis=1)print(result_df)

相关文章:

力扣601 体育馆的人流量

在解决"连续三天及以上人流量超过100的记录"问题时,MySQL方案作为力扣解决问题的方案通过窗口函数和分组技巧高效地识别连续记录。而Python与Pandas方案作为扩展则展示了在数据处理和分析方面的灵活性,通过行号变换和分组计数来筛选符合条件的…...

ubuntu20.04设置docker容器开机自启动

ubuntu20.04设置docker容器开机自启动 1 docker自动启动2 容器设置自动启动3 容器自启动失败处理 1 docker自动启动 (1)查看已启动的服务 $ sudo systemctl list-units --typeservice此命令会列出所有当前加载的服务单元。默认情况下,此命令…...

Kubernetes/k8s的核心概念

一、什么是 Kubernetes Kubernetes,从官方网站上可以看到,它是一个工业级的容器编排平台。Kubernetes 这个单词是希腊语,它的中文翻译是“舵手”或者“飞行员”。在一些常见的资料中也会看到“ks”这个词,也就是“k8s”&#xff…...

vue 前端预览 Excel 表

一、安装依赖包官网 npm i luckyexceltemplate 模板 <!-- 用于渲染表格的容器 --> <div id"luckysheet" stylewidth:100vw;height:100vh></div>二、加载 异步加载及 import LuckyExcel from luckyexcel;/* 下列代码加载 cdn 文件&#xff0c;你…...

【JS】生成N位随机数

作用 用于邮箱验证码 码 ramNum.js /*** 生成N位随机数字* param {Number} l 默认&#xff1a;6&#xff0c;默认生成6位随机数字* returns 返回N位随机数字*/ const ramNum (l 6) > {let num for (let i 0; i < l; i) {const n Math.random()const str String(n…...

2024年FPGA可以进吗

2024年&#xff0c;IC设计FPGA行业仍有可能是一个极具吸引力和活力的行业&#xff0c;主要原因包括&#xff1a; 1. 技术发展趋势&#xff1a;随着5G、人工智能、物联网、自动驾驶、云计算等高新技术的快速发展和广泛应用&#xff0c;对集成电路尤其是高性能、低功耗、定制化芯…...

小程序图形:echarts-weixin 入门使用

去官网下载整个项目&#xff1a; https://github.com/ecomfe/echarts-for-weixin 拷贝ec-canvs文件夹到小程序里面 index.js里面的写法 import * as echarts from "../../components/ec-canvas/echarts" const app getApp(); function initChart(canvas, width, h…...

百度百科人物创建要求是什么?

百度百科作为我国最大的中文百科全书&#xff0c;其收录的人物词条要求严谨、客观、有权威性。那么&#xff0c;如何撰写一篇高质量的人物词条呢&#xff1f;本文伯乐网络传媒将从内容要求、注意事项以及创建流程与步骤三个方面进行详细介绍。 一、内容要求 1. 基本信息&#…...

练习2-线性回归迭代(李沐函数简要解析)

环境:再练习1中 视频链接:https://www.bilibili.com/video/BV1PX4y1g7KC/?spm_id_from333.999.0.0 代码与详解 数据库 numpy 数据处理处理 torch.utils 数据加载与数据 d2l 专门的库 nn 包含各种层与激活函数 import numpy as np import torch from torch.utils import da…...

人像背景分割SDK,智能图像处理

美摄科技人像背景分割SDK解决方案&#xff1a;引领企业步入智能图像处理新时代 随着科技的不断进步&#xff0c;图像处理技术已成为许多行业不可或缺的一部分。为了满足企业对于高质量、高效率人像背景分割的需求&#xff0c;美摄科技推出了一款领先的人像背景分割SDK&#xf…...

100M服务器能同时容纳多少人访问

100M服务器的并发容纳人数会受到多种因素的影响&#xff0c;这些因素包括单个用户的平均访问流量大小、每个用户的平均访问页面数、并发用户比例、服务器和网络的流量利用率以及服务器自身的处理能力。 点击以下任一云产品链接&#xff0c;跳转后登录&#xff0c;自动享有所有…...

Mysql 的高可用详解

Mysql 高可用 复制 复制是解决系统高可用的常见手段。其思路就是&#xff1a;不要把鸡蛋都放在一个篮子里。 复制解决的基本问题是让一台服务器的数据与其他服务器保持同步。一台主库的数据可以同步到多台备库上&#xff0c;备库本身也可以被配置成另外一台服务器的主库。主…...

Acwing枚举、模拟与排序(一)

连号区间数 原题链接&#xff1a;https://www.acwing.com/problem/content/1212/ 初始最小值和最大值的依据是题目给出的数据范围。只要在数据范围之外就可以。 连号的时候&#xff0c;相邻元素元素之间&#xff0c;差值为1。那么区间右边界和左边界&#xff0c;的值的差&#…...

MySQL的主从同步原理

MySQL的主从同步&#xff08;也称为复制&#xff09;是一种数据同步技术&#xff0c;用于将一个MySQL服务器&#xff08;主服务器&#xff09;上的数据和变更实时复制到另一个或多个MySQL服务器&#xff08;从服务器&#xff09;。这项技术支持数据备份、读写分离、故障恢复等多…...

naive-ui-admin 表格去掉工具栏toolbar

使用naive-ui-admin的时候&#xff0c;有时候不需要显示工具栏&#xff0c;工具栏太占地方了。 1.在src/components/Table/src/props.ts 里面添加属性 showToolbar 默认显示&#xff0c;在不需要的地方传false。也可以默认不显示 &#xff0c;这个根据需求来。 2.在src/compo…...

C++之结构体

结构体 //一、结构体的概念、定义和使用 // 概念&#xff1a;结构体属于用户自定义的数据类型&#xff0c;允许用户存储不同的数据类型 #include<iostream> using namespace std; #include<string> //1.创建学生数据类型&#xff1a;学生包括&#xff08;姓名&am…...

分布式ID选型对比(1)

常见的几种ID生成方式对比: 种类 全局唯一 高性能 高可用 趋势递增 中心服务 缺点 UUID 是 高(本地生成,(无网络开销) 低(无序,不适用) 否 否 无序、字符串 数据库自增 单表唯一 中 中(宕机就会使业务服务中断) 是 否 安全性差,能猜出来规律 对于分库分表场景无法唯一 数据库自…...

T-SQL 高阶语法之存储过程

一&#xff1a;存储过程概念 预先存储好的sql程序&#xff0c;通过名称和参数进行执行&#xff0c;供应程序去调用&#xff0c;也可以有返回结果&#xff0c;存储过程可以包含sql语句 可以包含流程控制、逻辑语句等。 二&#xff1a;存储过程的优点 执行速度更快 允许模块化…...

解决鸿蒙模拟器卡顿的问题

缘起 最近在学习鸿蒙的时候&#xff0c;发现模拟器非常卡&#xff0c;不要说体验到鸿蒙的丝滑&#xff0c;甚至到严重影响使用的程度。 根据我开发Android的经验和在论坛翻了一圈&#xff0c;最终总结出了以下几个方案。 创建模拟器 1、在DevEco Virtual Device Configurat…...

【LeetCode每日一题】【BFS模版与例题】863.二叉树中所有距离为 K 的结点

BFS的基本概念 BFS 是广度优先搜索&#xff08;Breadth-First Search&#xff09;的缩写&#xff0c;是一种图遍历算法。它从给定的起始节点开始&#xff0c;逐层遍历图中的节点&#xff0c;直到遍历到目标节点或者遍历完所有可达节点。 BFS 算法的核心思想是先访问当前节点的…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

分布式增量爬虫实现方案

之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面&#xff0c;避免重复抓取&#xff0c;以节省资源和时间。 在分布式环境下&#xff0c;增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路&#xff1a;将增量判…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...