当前位置: 首页 > news >正文

多重背包问题中的二进制状态压缩

1.多重背包问题

 经典的多重背包问题和01背包问题的相似之处在于二者的一维遍历顺序都是从右侧往左侧遍历。

同时多重背包的一维写法比二维写法降低时间复杂度。

2.多重背包标准写法:(平铺展开形式)

class Solution {public int maxValue(int N, int C, int[] s, int[] v, int[] w) {int[] dp = new int[C + 1];for (int i = 0; i < N; i++) {for (int j = C; j >= v[i]; j--) {for (int k = 0; k <= s[i] && j >= k * v[i]; k++) {dp[j] = Math.max(dp[j], dp[j - k * v[i]] + k * w[i]);}}}return dp[C];}
}

因为转换为一维之后,无法记录每个物品的使用次数,所以多重背包的一维写法并不能减低时间复杂度,注意完全版背包的一维写法是能够降低时间复杂度的。此处的代码与01背包十分相似。01背包的代码如下:

class Solution {public int maxValue(int N, int C, int[] v, int[] w) {int[] dp = new int[C + 1];for (int i = 0; i < N; i++) {for (int j = C; j >= v[i]; j--) {// 不选该物品int n = dp[j]; // 选择该物品int y = dp[j-v[i]] + w[i]; dp[j] = Math.max(n, y);}}return dp[C];}
}

3.二进制压缩形式的多重背包

上述的多重背包的解法实际上是将带选择的m个物品平着展开为[1,1,1....](共计m个),具体可以查看最后一个for循环的写法,不断尝试一个一个的将数据加进去。

实际上这种解法只能解决数据量为平方级别的数据。而二进制解法则是将原本为 n 的物品用 ceil(log(n)) 个数来代替,从而降低算法复杂度。

学过 Linux 的都知道文件权限最高是 7,代表拥有读、写、执行的权限,但其实这个 7 是对应了 1、2、4 三个数字的,也就是 r:1w:2x:4 ,三种权限的组合共有 8 种可能性

7 可以用 1、2、4 来代替,像刚刚提到的 10 ,我们可以使用 1、2、4、3 来代替,你可能会有疑问,为什么是 1、2、4、3,而不是 1、2、4、6 或者 1、2、4、8 呢?

其实把他们几个数加起来就知道了,1、2、4、6 可以表达的范围是 0~13,而 1、2、4、8 可以表达的范围是 0~15,而我们要求的是表达 10,大于 10 的范围是不能被选择的。

所以我们可以在 1、2、4 (表达的范围是 0~7)的基础上,增加一个数 3(由 10 - 7 而来),这样就能满足我们需要表达的范围 0~10。

具体的转换为二进制的代码如下所示:

class Solution {public int maxValue(int N, int C, int[] s, int[] v, int[] w) {// 扁平化List<Integer> worth = new ArrayList<>();List<Integer> volume = new ArrayList<>();// 我们希望每件物品都进行扁平化,所以首先遍历所有的物品for (int i = 0; i < N; i++) {// 获取每件物品的出现次数int val = s[i];// 进行扁平化:如果一件物品规定的使用次数为 7 次,我们将其扁平化为三件物品:1*重量&1*价值、2*重量&2*价值、4*重量&4*价值// 三件物品都不选对应了我们使用该物品 0 次的情况、只选择第一件扁平物品对应使用该物品 1 次的情况、只选择第二件扁平物品对应使用该物品 2 次的情况,只选择第一件和第二件扁平物品对应了使用该物品 3 次的情况 ... //注意此处是等号,可能正好减完for (int k = 1; k <= val; k *= 2) { val -= k;worth.add(w[i] * k);volume.add(v[i] * k);}if (val > 0) {//没有正好减完worth.add(w[i] * val);volume.add(v[i] * val);}}// 0-1 背包问题解决方案int[] dp = new int[C + 1];for (int i = 0; i < worth.size(); i++) {for (int j = C; j >= volume.get(i); j--) {dp[j] = Math.max(dp[j], dp[j - volume.get(i)] + worth.get(i));}}return dp[C];}
}

相关文章:

多重背包问题中的二进制状态压缩

1.多重背包问题 经典的多重背包问题和01背包问题的相似之处在于二者的一维遍历顺序都是从右侧往左侧遍历。 同时多重背包的一维写法不比二维写法降低时间复杂度。 2.多重背包标准写法:(平铺展开形式&#xff09; class Solution {public int maxValue(int N, int C, int[] s…...

汇编语言程序设计(四)之汇编指令

系列文章 汇编语言程序设计&#xff08;一&#xff09; 汇编语言程序设计&#xff08;二&#xff09;之寄存器 汇编语言程序设计&#xff08;三&#xff09;之汇编程序 汇编指令 1. 数据传输指令 指令包括&#xff1a;MOV、XCHG、XLAT、LEA、LDS、LES、PUSH、POP、PUSHF、LA…...

Vant2 源码分析之 vant-sticky

前言 原打算借鉴 vant-sticky 源码&#xff0c;实现业务需求的某个功能&#xff0c;第一眼看以为看懂了&#xff0c;拿来用的时候&#xff0c;才发现一知半解。看第二遍时&#xff0c;对不起&#xff0c;是我肤浅了。这里侧重分析实现原理&#xff0c;其他部分不拓展开来&…...

【自然语言处理】【大模型】大语言模型BLOOM推理工具测试

相关博客 【自然语言处理】【大模型】大语言模型BLOOM推理工具测试 【自然语言处理】【大模型】GLM-130B&#xff1a;一个开源双语预训练语言模型 【自然语言处理】【大模型】用于大型Transformer的8-bit矩阵乘法介绍 【自然语言处理】【大模型】BLOOM&#xff1a;一个176B参数…...

云桌面技术初识:VDI,IDV,VOI,RDS

VDI&#xff08;Virtual Desktop Infrastucture&#xff0c;虚拟桌面架构&#xff09;&#xff0c;俗称虚拟云桌面 VDI构架采用的“集中存储、集中运算”构架&#xff0c;所有的桌面以虚拟机的方式运行在服务器硬件虚拟化层上&#xff0c;桌面以图像传输的方式发送到客户端。 …...

基于本地centos构建gdal2.4.4镜像

1.前言 基于基础镜像构建gdal环境一般特别大&#xff0c;一般少则1.6G&#xff0c;多则2G甚至更大&#xff0c;这对于镜像的迁移造成了极大的不便。究其原因在于容器中有大量的源码文件以及编译中间过程文件&#xff0c;还要大量编译需要的yum库。本文主要通过在centos系统上先…...

生产环境线程问题排查

线程状态的解读RUNNABLE线程处于运行状态&#xff0c;不一定消耗CPU。例如&#xff0c;线程从网络读取数据&#xff0c;大多数时间是挂起的&#xff0c;只有数据到达时才会重新唤起进入执行状态。只有Java代码显式调用sleep或wait方法时&#xff0c;虚拟机才可以精准获取到线程…...

Day908.joinsnljdist和group问题和备库自增主键问题 -MySQL实战

join&snlj&dist和group问题和备库自增主键问题 Hi&#xff0c;我是阿昌&#xff0c;今天学习记录的是关于join&snlj&dist和group问题和备库自增主键问题的内容。 一、join 的写法 join 语句怎么优化&#xff1f;中&#xff0c;在介绍 join 执行顺序的时候&am…...

算法 - 剑指Offer 丑数

题目 我们把只包含质因子 2、3 和 5 的数称作丑数&#xff08;Ugly Number&#xff09;。求按从小到大的顺序的第 n 个丑数。 解题思路 这题我使用最简单方法去做&#xff0c; 首先我们可以获取所有2n,3n,5*n的丑数&#xff0c;只是我们这里暂时无法排序&#xff0c;并且可能…...

【ONE·C || 文件操作】

总言 C语言&#xff1a;文件操作。    文章目录总言1、文件是什么&#xff1f;为什么需要文件&#xff1f;1.1、为什么需要文件&#xff1f;1.2、文件是什么&#xff1f;2、文件的打开与关闭2.1、文件指针2.2、文件打开和关闭&#xff1a;fopen、fclose2.3、文件使用方式3、文…...

cmd窗口中java命令报错。错误:找不到或无法加载主类 java的jdk安装过程中踩过的坑

错误: 找不到或无法加载主类 HelloWorld 遇到这个问题时&#xff0c;我尝试过网上其他人的做法。有试过添加classpath&#xff0c;也有试过删除classpath。但是依然报错&#xff0c;这里javac可以编译通过&#xff0c;说明代码应该是没有问题的。只是在运行是出现了错误。我安装…...

Breathwork(呼吸练习)

查了下呼吸练习相关内容&#xff0c;做个记录。我又在油管学习啦。 喜欢在you. tube看一些self-help相关的内容。比如学习方法、拉伸、跑步、力量举、自重锻炼等等。 总是听Obi Vicent说起Breathwork&#xff0c;比如&#xff1a; My 6am Morning Routine | New Healthy Habit…...

taobao.itemprops.get( 获取标准商品类目属性 )

&#xffe5;开放平台基础API不需用户授权 通过设置必要的参数&#xff0c;来获取商品后台标准类目属性&#xff0c;以及这些属性里面详细的属性值prop_values。 公共参数 请求地址: HTTP地址 http://gw.api.taobao.com/router/rest 公共请求参数: 公共响应参数: 请求参数 点…...

QT配置安卓环境(保姆级教程)

目录 下载环境资源 JDK1.8 NDK SDK ​安装QT 配置环境 下载环境资源 JDK1.8 介绍JDK是Java开发的核心工具&#xff0c;为Java开发者提供了一套完整的开发环境&#xff0c;包括开发工具、类库和API等&#xff0c;使得开发者可以高效地编写、测试和运行Java应用程序。 下载…...

【uni-app教程】八、UniAPP Vuex 状态管理

八、UniAPP Vuex 状态管理 概念 Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。它采用集中式存储管理应用的所有组件的状态&#xff0c;并以相应的规则保证状态以一种可预测的方式发生变化。 应用场景 Vue多个组件之间需要共享数据或状态。 关键规则 State&#xff1a…...

同花顺测试面经(30min)

大概三十分钟&#xff0c;面试官人还挺好的 1.自我介绍 2.详细问你了自我介绍中的一个实习经历 3.对我们公司有什么了解 &#xff01;&#xff01;&#xff08;高频&#xff09; 4.对测试有什么看法&#xff0c;为什么选测试 5.黑盒白盒分别是什么 6.对测试左移有什么看法…...

C++-简述#ifdef、#else、#endif和#ifndef的作用

回答如下&#xff1a; #ifdef&#xff0c;#else&#xff0c;#endif和#ifndef都是预处理指令&#xff0c;用于条件编译。#ifdef&#xff1a;这个指令用来判断一个宏是否已经被定义过&#xff0c;如果已经定义过&#xff0c;则执行后面的代码块。#else&#xff1a;这个指令一般与…...

VictoriaMetrics 集群部署

官网 ## 官网 https://github.com/VictoriaMetrics/VictoriaMetrics 集群角色详解 VictoriaMetrics 集群模式。主要由 vmstorage ,vminsert,vmselect 三部分组成&#xff0c;这三个组件每个组件都可以单独进行扩展。其中: vmstorage 负责提供数据存储服务vminsert 是数据存…...

【基于感知损失的无监督泛锐化】

PercepPan: Towards Unsupervised Pan-Sharpening Based on Perceptual Loss &#xff08;PercepPan&#xff1a;基于感知损失的无监督泛锐化&#xff09; 在基于神经网络的全色锐化文献中&#xff0c;作为地面实况标签的高分辨率多光谱图像通常是不可用的。为了解决这个问题…...

在vercel上用streamlit部署网站

Verce和Streamlit都是非常流行的Web应用程序部署平台。以下是从零开始在Vercel上部署Streamlit应用程序的一些基本步骤。 安装 Streamlit 在本地计算机上安装Streamlit。可以轻松地通过在命令行中运行以下命令来安装&#xff1a; pip install streamlit为 Streamlit 应用程序…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

MFE(微前端) Module Federation:Webpack.config.js文件中每个属性的含义解释

以Module Federation 插件详为例&#xff0c;Webpack.config.js它可能的配置和含义如下&#xff1a; 前言 Module Federation 的Webpack.config.js核心配置包括&#xff1a; name filename&#xff08;定义应用标识&#xff09; remotes&#xff08;引用远程模块&#xff0…...

鸿蒙HarmonyOS 5军旗小游戏实现指南

1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;采用DevEco Studio实现&#xff0c;包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...

UE5 音效系统

一.音效管理 音乐一般都是WAV,创建一个背景音乐类SoudClass,一个音效类SoundClass。所有的音乐都分为这两个类。再创建一个总音乐类&#xff0c;将上述两个作为它的子类。 接着我们创建一个音乐混合类SoundMix&#xff0c;将上述三个类翻入其中&#xff0c;通过它管理每个音乐…...