挑战杯 基于深度学习的中文情感分类 - 卷积神经网络 情感分类 情感分析 情感识别 评论情感分类
文章目录
- 1 前言
- 2 情感文本分类
- 2.1 参考论文
- 2.2 输入层
- 2.3 第一层卷积层:
- 2.4 池化层:
- 2.5 全连接+softmax层:
- 2.6 训练方案
- 3 实现
- 3.1 sentence部分
- 3.2 filters部分
- 3.3 featuremaps部分
- 3.4 1max部分
- 3.5 concat1max部分
- 3.6 关键代码
- 4 实现效果
- 4.1 测试英文情感分类效果
- 4.2 测试中文情感分类效果
- 5 调参实验结论
- 6 建议
- 7 最后
1 前言
🔥 优质竞赛项目系列,今天要分享的是
基于深度学习的中文情感分类
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
2 情感文本分类
2.1 参考论文
Convolutional Neural Networks for Sentence
Classification
模型结构

在短文本分析任务中,由于句子句长长度有限、结构紧凑、能够独立表达意思,使得CNN在处理这一类问题上成为可能,主要思想是将ngram模型与卷积操作结合起来
2.2 输入层
如图所示,输入层是句子中的词语对应的wordvector依次(从上到下)排列的矩阵,假设句子有 n 个词,vector的维数为 k ,那么这个矩阵就是 n
× k 的(在CNN中可以看作一副高度为n、宽度为k的图像)。
这个矩阵的类型可以是静态的(static),也可以是动态的(non static)。静态就是word
vector是固定不变的,而动态则是在模型训练过程中,word vector也当做是可优化的参数,通常把反向误差传播导致word
vector中值发生变化的这一过程称为Fine tune。(这里如果word
vector如果是随机初始化的,不仅训练得到了CNN分类模型,还得到了word2vec这个副产品了,如果已经有训练的word
vector,那么其实是一个迁移学习的过程)
对于未登录词的vector,可以用0或者随机小的正数来填充。
2.3 第一层卷积层:
输入层通过卷积操作得到若干个Feature Map,卷积窗口的大小为 h ×k ,其中 h 表示纵向词语的个数,而 k 表示word
vector的维数。通过这样一个大型的卷积窗口,将得到若干个列数为1的Feature Map。(熟悉NLP中N-GRAM模型的读者应该懂得这个意思)。
2.4 池化层:
接下来的池化层,文中用了一种称为Max-over-timePooling的方法。这种方法就是简单地从之前一维的Feature
Map中提出最大的值,文中解释最大值代表着最重要的信号。可以看出,这种Pooling方式可以解决可变长度的句子输入问题(因为不管Feature
Map中有多少个值,只需要提取其中的最大值)。最终池化层的输出为各个Feature Map的最大值们,即一个一维的向量。
2.5 全连接+softmax层:
池化层的一维向量的输出通过全连接的方式,连接一个Softmax层,Softmax层可根据任务的需要设置(通常反映着最终类别上的概率分布)。
2.6 训练方案
在倒数第二层的全连接部分上使用Dropout技术,Dropout是指在模型训练时随机让网络某些隐含层节点的权重不工作,不工作的那些节点可以暂时认为不是网络结构的一部分,但是它的权重得保留下来(只是暂时不更新而已),因为下次样本输入时它可能又得工作了,它是防止模型过拟合的一种常用的trikc。同时对全连接层上的权值参数给予L2正则化的限制。这样做的好处是防止隐藏层单元自适应(或者对称),从而减轻过拟合的程度。
在样本处理上使用minibatch方式来降低一次模型拟合计算量,使用shuffle_batch的方式来降低各批次输入样本之间的相关性(在机器学习中,如果训练数据之间相关性很大,可能会让结果很差、泛化能力得不到训练、这时通常需要将训练数据打散,称之为shuffle_batch)。
3 实现

我们以上图为例,图上用红色标签标注了5部分,结合这5个标签,具体解释下整个过程的操作,来看看CNN如何解决文本分类问题的。
3.1 sentence部分
上图句子为“[I like this movie very much!”
,一共有两个单词加上一个感叹号,关于这个标点符号,不同学者有不同的操作,比如去除标点符号。在这里我们先不去除,那么整个句子有7个词,词向量维度为5,那么整个句子矩阵大小为7x5
3.2 filters部分
filters的区域大小可以使不同的,在这里取(2,3,4)3种大小,每种大小的filter有两个不同的值的filter,所以一共是有6个filter。
3.3 featuremaps部分
我们在句子矩阵和过滤器矩阵填入一些值,那么我们可以更好理解卷积计算过程,这和CNN原理那篇文章一样

比如我们取大小为2的filter,最开始与句子矩阵的前两行做乘积相加,得到0.6 x 0.2 + 0.5 x 0.1 + … + 0.1 x 0.1 =
0.51,然后将filter向下移动1个位置得到0.53.最终生成的feature map大小为(7-2+1x1)=6。
为了获得feature map,我们添加一个bias项和一个激活函数,比如Relu
3.4 1max部分
因为不同大小的filter获取到的feature map大小也不一样,为了解决这个问题,然后添加一层max-
pooling,选取一个最大值,相同大小的组合在一起
3.5 concat1max部分
经过max-pooling操作之后,我们将固定长度的向量给sofamax,来预测文本的类别。
3.6 关键代码
下面是利用Keras实现的CNN文本分类部分代码:
# 创建tensorprint("正在创建模型...")inputs=Input(shape=(sequence_length,),dtype='int32')embedding=Embedding(input_dim=vocabulary_size,output_dim=embedding_dim,input_length=sequence_length)(inputs)reshape=Reshape((sequence_length,embedding_dim,1))(embedding)# cnnconv_0=Conv2D(num_filters,kernel_size=(filter_sizes[0],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)conv_1=Conv2D(num_filters,kernel_size=(filter_sizes[1],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)conv_2=Conv2D(num_filters,kernel_size=(filter_sizes[2],embedding_dim),padding='valid',kernel_initializer='normal',activation='relu')(reshape)maxpool_0=MaxPool2D(pool_size=(sequence_length-filter_sizes[0]+1,1),strides=(1,1),padding='valid')(conv_0)maxpool_1=MaxPool2D(pool_size=(sequence_length-filter_sizes[1]+1,1),strides=(1,1),padding='valid')(conv_1)maxpool_2=MaxPool2D(pool_size=(sequence_length-filter_sizes[2]+1,1),strides=(1,1),padding='valid')(conv_2)concatenated_tensor = Concatenate(axis=1)([maxpool_0, maxpool_1, maxpool_2])flatten = Flatten()(concatenated_tensor)dropout = Dropout(drop)(flatten)output = Dense(units=2, activation='softmax')(dropout)model=Model(inputs=inputs,outputs=output)**main.py**import osos.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152os.environ["CUDA_VISIBLE_DEVICES"] = ""import reimport numpy as npfrom flask import Flask, render_template, requestfrom keras.models import load_modelfrom data_helpers_english import build_input_englishfrom data_helpers_chinese import build_input_chineseapp = Flask(__name__)en_model = load_model('results/weights.007-0.7618.hdf5')ch_model = load_model('results/chinese.weights.003-0.9083.hdf5')# load 进来模型紧接着就执行一次 predict 函数print('test train...')print(en_model.predict(np.zeros((1, 56))))print(ch_model.predict(np.zeros((1, 50))))print('test done.')def en_predict(input_x):sentence = input_xinput_x = build_input_english(input_x)y_pred = en_model.predict(input_x)result = list(y_pred[0])result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}return resultdef ch_predict(input_x):sentence = input_xinput_x = build_input_chinese(input_x)y_pred = ch_model.predict(input_x)result = list(y_pred[0])result = {'sentence': sentence, 'positive': result[1], 'negative': result[0]}return result@app.route('/classification', methods=['POST', 'GET'])def english():if request.method == 'POST':review = request.form['review']# 来判断是中文句子/还是英文句子review_flag = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", review) # 去除数字review_flag = re.sub("[\s+\.\!\/_,$%^*(+\"\')]+|[+——()?【】“”!,。?、~@#¥%……&*()]+", "", review_flag)if review_flag:result = en_predict(review)# result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}return render_template('index.html', result=result)else:result = ch_predict(review)# result = {'sentence': 'hello', 'positive': '03.87878', 'negative': '03.64465'}return render_template('index.html', result=result)return render_template('index.html')## if __name__ == '__main__':# app.run(host='0.0.0.0', debug=True)
4 实现效果
4.1 测试英文情感分类效果

准训练结果:验证集76%左右
4.2 测试中文情感分类效果

准训练结果:验证集91%左右
5 调参实验结论
- 由于模型训练过程中的随机性因素,如随机初始化的权重参数,mini-batch,随机梯度下降优化算法等,造成模型在数据集上的结果有一定的浮动,如准确率(accuracy)能达到1.5%的浮动,而AUC则有3.4%的浮动;
- 词向量是使用word2vec还是GloVe,对实验结果有一定的影响,具体哪个更好依赖于任务本身;
- Filter的大小对模型性能有较大的影响,并且Filter的参数应该是可以更新的;
- Feature Map的数量也有一定影响,但是需要兼顾模型的训练效率;
- 1-max pooling的方式已经足够好了,相比于其他的pooling方式而言;
- 正则化的作用微乎其微。
6 建议
- 使用non-static版本的word2vec或者GloVe要比单纯的one-hot representation取得的效果好得多;
- 为了找到最优的过滤器(Filter)大小,可以使用线性搜索的方法。通常过滤器的大小范围在1-10之间,当然对- 于长句,使用更大的过滤器也是有必要的;
- Feature Map的数量在100-600之间;
- 可以尽量多尝试激活函数,实验发现ReLU和tanh两种激活函数表现较佳;
- 使用简单的1-max pooling就已经足够了,可以没必要设置太复杂的pooling方式;
- 当发现增加Feature Map的数量使得模型的性能下降时,可以考虑增大正则的力度,如调高dropout的概率;
- 为了检验模型的性能水平,多次反复的交叉验证是必要的,这可以确保模型的高性能并不是偶然。
7 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
挑战杯 基于深度学习的中文情感分类 - 卷积神经网络 情感分类 情感分析 情感识别 评论情感分类
文章目录 1 前言2 情感文本分类2.1 参考论文2.2 输入层2.3 第一层卷积层:2.4 池化层:2.5 全连接softmax层:2.6 训练方案 3 实现3.1 sentence部分3.2 filters部分3.3 featuremaps部分3.4 1max部分3.5 concat1max部分3.6 关键代码 4 实现效果4.…...
关于RSA公私钥加密报错Data must not be longer than 117 bytes问题解决办法
一、问题描述 1.背景 大家都知道,在日常项目开发过程中,数据的传输安全一直都是值得重视的问题,当然了市面上解决此类办法的技术也有很多,本项目在提供给第三方使用是数据以及校验第三方传递的参数,采用常用的RSA公私…...
【云原生】kubeadm快速搭建K8s集群Kubernetes1.19.0
目录 一、 Kubernetes 的概述 二、服务器配置 2.1 服务器部署规划 2.2服务器初始化配置 三、安装Docker/kubeadm/kubelet【所有节点】 3.1 安装Docker 3.2 添加阿里云YUM软件源 3.3 安装kubeadm,kubelet和kubectl 四、部署Kubernetes Master 五、部署Kube…...
Android 开发环境搭建的步骤
本文将为您详细讲解 Android 开发环境搭建的步骤。搭建 Android 开发环境需要准备一些软件和工具,以下是一些基础步骤: 1. 安装 Java Development Kit (JDK) 首先,您需要安装 Java Development Kit (JDK)。JDK 是 Android 开发的基础…...
六、继承(一)
1 继承的引入 以往我们想分别实现描述学生、老师的类,可能会这样子做: class Student {string _name;string _number;int _tel;int id;string _address;int _age; }; class Teacher {string _name;int _level;int _tel;int id;string _address;int _ag…...
数字化转型导师鹏:政府数字化转型政务服务类案例研究
政府数字化转型政务服务类案例研究 课程背景: 很多地方政府存在以下问题: 不清楚标杆省政府数字化转型的政务服务类成功案例 不清楚地级市政府数字化转型的政务服务类成功案例 不清楚县区级政府数字化转型的政务服务类成功案例 课程特色&#x…...
解决ODOO12 恢复数据库提示内存不够报错
1. 现象 点击 ‘restore database’ 控制台报错: 2. 解决措施 a. 进入启动脚本的文件夹 cd odoo/odoo-12.0/输入命令 ./odoo-bin --addons-pathaddons --databaseodoo --db_userodoo --db_passwordodoo --db_hostlocalhost --db_port5432 -i INITb. 刷新页面…...
关于数据提交上传服务端的数据类型以及项目打包上线的流程
1 请求头的类型: content-type; 01: application/json 数据以json格式请求:{"key":"value"} 02: application/x-www.form-urlencoded from表单的数据格式 name"zs"&age12 03 mutipart/form-data…...
儿童悬吊训练系统:改善脑性麻痹儿童平衡感与运动能力的有效途径
脑性麻痹(CP)是一种运动障碍,常常由于早期的运动皮层损伤而引起。这种损伤可能导致姿势、操纵技能和行走能力的差异。平衡控制不良是 CP 患儿面临的一项主要挑战,它可能导致动作控制异常以及步态问题,从而影响日常活动…...
ElasticSearch之文档的存储
写在前面 本文看下文档的存储相关内容。 1:如何确定文档存储在哪个分片? 我们需要确保文档均匀分布在所有的分片中,避免某些部分机器空闲,部分机器繁忙的情况出现,想要实现均匀分布我们可以考虑如下的几种分片路由算…...
在Redhat 7 Linux上安装llama.cpp [ 错误stdatomic.h: No such file or directory]
前期准备 在github上下载llama.cpp或克隆。 GitHub - ggerganov/llama.cpp: LLM inference in C/C git clone https://github.com/ggerganov/llama.cpp.gitcd llama.cpp 执行make命令编译llama.cpp make 在huggingface里下载量化了的 gguf格式的llama2模型。 https:/…...
linux 常用 命令行HTTP客户端
在Linux环境中,命令行HTTP客户端是一种用于发送HTTP请求的工具,它们通常用于测试网站、服务器或API的响应。这些客户端支持各种HTTP方法,如GET、POST、PUT、DELETE等,并允许用户设置请求头、发送数据等。以下是一些常用的命令行HT…...
深入理解@Param注解:用于参数映射的利器
摘要:Param注解在Java开发中被广泛应用,它可以优雅地解决方法参数与SQL语句中占位符的映射问题,提高代码的可读性和可维护性。本文将深入探讨Param注解的背景、使用方法、解决的问题、映射原理,并对使用与不使用Param注解的情况进…...
OCP Secure boot必要特性
三点必需要求: The platform components must: 1. Provide a mechanism for securely anchoring a root of trust public key. // 提供一种用于安全地锚定信任根公钥的机制。 2. Verify the device firmware digital signature using the anchored public key /…...
全新攻击面管理平台
首页大屏 内测阶段,免费试用一个月 有兴趣体验的师傅,来长亭云图极速版群里找我 py...
在VMware中安装CentOS 7并配置Docker
VMware安装CentOS 7 一、介绍 该文章介绍如何使用启动U盘在虚拟机里面安装系统,虚拟机版本为VMware Workstation 16 pro,Linux版本为CentOS Linux release 7.9.2009 (Core)。 二、安装 1、创建虚拟机 点击创建新的虚拟机 选择典型就可以了…...
Leetcoder Day37| 动态规划part04 背包问题
01背包理论基础 面试掌握01背包,完全背包和重背包就够用了。 背包问题的理论基础重中之重是01背包,一定要理解透! 01 背包 有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品…...
突破编程_C++_面试(STL 编程 vector )
面试题 1 :std::vector 的底层存储机制是什么? std::vector 的底层存储机制是一个动态数组,它内部通过一片连续的内存空间来存储元素。当这个连续的内存空间不足以容纳新元素时,std::vector 会自动申请一块更大的内存空间&#x…...
【报名指南】2024年第九届数维杯数学建模挑战赛报名全流程图解
1.官方报名链接: 2024年第九届数维杯大学生数学建模挑战赛http://www.nmmcm.org.cn/match_detail/32 2.报名流程(电脑与手机报名操作流程一致) 参赛对象为在校专科生、本科生、研究生,每组参赛人数为1-3人(指导老师不…...
C#,哈夫曼编码(Huffman Code)压缩(Compress )与解压缩(Decompress)算法与源代码
David A. Huffman 1 哈夫曼编码简史(Huffman code) 1951年,哈夫曼和他在MIT信息论的同学需要选择是完成学期报告还是期末考试。导师Robert M. Fano给他们的学期报告的题目是,寻找最有效的二进制编码。由于无法证明哪个已有编码是…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
AI病理诊断七剑下天山,医疗未来触手可及
一、病理诊断困局:刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断",医生需通过显微镜观察组织切片,在细胞迷宫中捕捉癌变信号。某省病理质控报告显示,基层医院误诊率达12%-15%,专家会诊…...
