Java知识点之单例模式
1、单例模式(Binary Search)
单例模式确保某个类只有一个实例,而且自行实例化并向整个系统提供这个实例。在计算机系统中,线程池、缓存、日志对象、对话框、打印机、显卡的驱动程序对象常被设计成单例。这些应用都或多或少具有资源管理器的功能。每台计算机可以有若干个打印机,但只能有一个Printer Spooler,以避免两个打印作业同时输出到打印机中。每台计算机可以有若干通信端口,系统应当集中管理这些通信端口,以避免一个通信端口同时被两个请求同时调用。总之,选择单例模式就是为了避免不一致状态。
2、单例模式的特点
1、单例类只能有一个实例。
2、单例类必须自己创建自己的唯一实例。
3、单例类必须给所有其他对象提供这一实例。
4、单例模式保证了全局对象的唯一性,比如系统启动读取配置文件就需要单例保证配置的一致性。
3、单例的四大原则
1、构造私有。
2、以静态方法或者枚举返回实例。
3、确保实例只有一个,尤其是多线程环境。
4、确保反序列化时不会重新构建对象。
4、实现单例模式的方式
(1)饿汉式(立即加载):
饿汉式单例在类加载初始化时就创建好一个静态的对象供外部使用,除非系统重启,这个对象不会改变,所以本身就是线程安全的。
Singleton通过将构造方法限定为private避免了类在外部被实例化,在同一个虚拟机范围内,Singleton的唯一实例只能通过getInstance()方法访问。(事实上,通过Java反射机制是能够实例化构造方法为private的类的,会使Java单例实现失效)
1. /**
2. * 饿汉式(立即加载)
3. */
4. public class Singleton1 {
5. /**
6. * 私有构造
7. */
8. private Singleton1() {
9. System.out.println("构造函数Singleton1");
10. }
11. /**
12. * 初始值为实例对象
13. */
14. private static Singleton1 single = new Singleton1();
15. /**
16. * 静态工厂方法
17. * @return 单例对象
18. */
19. public static Singleton1 getInstance() {
20. System.out.println("getInstance");
21. return single;
22. }
23. public static void main(String[] args){
24. System.out.println("初始化");
25. Singleton1 instance = Singleton1.getInstance();
26. }
27. }
(2)懒汉式(延迟加载):
该示例虽然用延迟加载方式实现了懒汉式单例,但在多线程环境下会产生多个Singleton对象
1. /**
2. * 懒汉式(延迟加载)
3. */
4. public class Singleton2 {
5. /**
6. * 私有构造
7. */
8. private Singleton2() {
9. System.out.println("构造函数Singleton2");
10. }
11. /**
12. * 初始值为null
13. */
14. private static Singleton2 single = null;
15. /**
16. * 静态工厂方法
17. * @return 单例对象
18. */
19. public static Singleton2 getInstance() {
20. if(single == null){
21. System.out.println("getInstance");
22. single = new Singleton2();
23. }
24. return single;
25. }
26. public static void main(String[] args){
27.
28. System.out.println("初始化");
29. Singleton2 instance = Singleton2.getInstance();
30. }
31. }
(3)同步锁(解决线程安全问题):
在方法上加synchronized同步锁或是用同步代码块对类加同步锁,此种方式虽然解决了多个实例对象问题,但是该方式运行效率却很低下,下一个线程想要获取对象,就必须等待上一个线程释放锁之后,才可以继续运行。
1. /** * 同步锁(解决线程安全问题)
2. */
3. public class Singleton3 {
4.
5. /**
6. * 私有构造
7. */
8. private Singleton3() {}
9. /**
10. * 初始值为null
11. */
12. private static Singleton3 single = null;
13. public static Singleton3 getInstance() {
14. // 等同于 synchronized public static Singleton3 getInstance()
15. synchronized(Singleton3.class){
16. // 注意:里面的判断是一定要加的,否则出现线程安全问题
17. if(single == null){
18. single = new Singleton3();
19. }
20. }
21. return single;
22. }
23. }
(4)双重检查锁(提高同步锁的效率):
使用双重检查锁进一步做了优化,可以避免整个方法被锁,只对需要锁的代码部分加锁,可以提高执行效率。
1. /**
2. * 双重检查锁(提高同步锁的效率)
3. */
4. public class Singleton4 {
5. /**
6. * 私有构造
7. */
8. private Singleton4() {}
9. /**
10. * 初始值为null
11. */
12. private static Singleton4 single = null;
13. /**
14. * 双重检查锁
15. * @return 单例对象
16. */
17. public static Singleton4 getInstance() {
18. if (single == null) {
19. synchronized (Singleton4.class) {
20. if (single == null) {
21. single = new Singleton4();
22. }
23. }
24. }
25. return single;
26. }
27. }
(5) 静态内部类:
这种方式引入了一个内部静态类(static class),静态内部类只有在调用时才会加载,它保证了Singleton实例的延迟初始化,又保证了实例的唯一性。它把singleton的实例化操作放到一个静态内部类中,在第一次调用getInstance()方法时,JVM才会去加载InnerObject类,同时初始化singleton实例,所以能让getInstance() 方法线程安全。
特点是:即能延迟加载,也能保证线程安全。
静态内部类虽然保证了单例在多线程并发下的线程安全性,但是在遇到序列化对象时,默认的方式运行得到的结果就是多例的。
1. /**
2. *
3. * 静态内部类(延迟加载,线程安全)
4. */
5. public class Singleton5 {
6. /**
7. * 私有构造
8. */
9. private Singleton5() {}
10. /**
11. * 静态内部类
12. */
13. private static class InnerObject{
14. private static Singleton5 single = new Singleton5();
15. }
16. public static Singleton5 getInstance() {
17. return InnerObject.single;
18. }
19. }
(6)内部枚举类实现(防止反射攻击):
事实上,通过Java反射机制是能够实例化构造方法为private的类的。这也就是我们现在需要引入的枚举单例模式。
1. public class SingletonFactory {
2. /**
3. * 内部枚举类
4. */
5. private enum EnumSingleton{
6. Singleton;
7. private Singleton6 singleton;
8. //枚举类的构造方法在类加载是被实例化
9. private EnumSingleton(){
10. singleton = new Singleton6();
11. }
12. public Singleton6 getInstance(){
13. return singleton;
14. }
15. }
16. public static Singleton6 getInstance() {
17. return EnumSingleton.Singleton.getInstance();
18. }
19. }
20. class Singleton6 {
21. public Singleton6(){}
22. }
相关文章:
Java知识点之单例模式
1、单例模式(Binary Search) 单例模式确保某个类只有一个实例,而且自行实例化并向整个系统提供这个实例。在计算机系统中,线程池、缓存、日志对象、对话框、打印机、显卡的驱动程序对象常被设计成单例。这些应用都或多或少具有资…...
Flutter第三弹:常用的Widget
目标: 1)常用的Widget有哪些?有什么特征? 2)开发一个简单的登录页面。 一、Flutter常用Widget 对于Flutter来说,一切皆Widget. 常用的Widget,包括一些基础功能的Widget. 控件名称功能备注…...
Dynamic Wallpaper v17.4 mac版 动态视频壁纸 兼容 M1/M2
Dynamic Wallpaper Engine 是一款适用于 Mac 电脑的视频动态壁纸, 告别单调的静态壁纸,拥抱活泼的动态壁纸。内置在线视频素材库,一键下载应用,也可导入本地视频,同时可以将视频设置为您的电脑屏保。 应用介绍 Dynam…...
Windows / Mac应用程序在Linux系统中的兼容性问题 解决方案
Linux系统可以通过多种方式提高与Windows或Mac应用程序的兼容性。这里有一些解决方案 Windows应用程序兼容性解决方案: Wine Wine是一个允许Linux和Unix系统上运行Windows应用程序的兼容层。 它不是模拟器,而是实现了Windows API的开源实现。 许多W…...
Net Core 使用Mongodb操作文件(上传,下载)
Net Core 使用Mongodb操作文件(上传,下载) 1.Mongodb GridFS 文件操作帮助类。 GridFS 介绍 https://baike.baidu.com/item/GridFS/6342715?fraladdin DLL源码:https://gitee.com/chenjianhua1985/mongodb-client-encapsulati…...
适用于系统版本:CentOS 6/7/8的基线安全检测脚本
#!/bin/bash #适用于系统版本:CentOS 6/7/8 echo "----------------检测是否符合密码复杂度要求----------------" #把minlen(密码最小长度)设置为8-32位,把minclass(至少包含小写字母、大写字母、数字、特殊…...
Seata源码流程图
1.第一阶段分支事务的注册 流程图地址:https://www.processon.com/view/link/6108de4be401fd6714ba761d 2.第一阶段开启全局事务 流程图地址:https://www.processon.com/view/link/6108de13e0b34d3e35b8e4ef 3.第二阶段全局事务的提交 流程图地址…...
英飞凌电源管理PMIC的安全应用
摘要 本篇文档主要用来介绍英飞凌电源管理芯片TLF35584的使用,基于电动助力转向应用来介绍。包含一些安全机制的执行。 TLF35584介绍 TLF35584是英飞凌推出的针对车辆安全应用的电源管理芯片,符合ASIL D安全等级要求,具有高效多电源输出通道&…...
快速在Linux系统安装MySQL
虚拟机使用docker安装MySQL 使用docker拉去镜像 查看mysql的镜像 docker search mysql拉去mysql镜像 docker pull mysql查看下载的镜像 docker images启动容器 docker start mysql进入MySQL容器 docker exec -it mysql /bin/bash登录mysql mysql -u root -p检查是否进入…...
数据库相关理论知识(有目录便于直接锁定相关知识点+期末复习)
一,数据模型,关系型数据模型,网状模型,层次模型 1.数据库模型是用来描述和表示现实世界中的事物、概念以及它们之间的关系的工具,但是并不是越专业越好,还要平衡它的模型的复杂性、通用性和成本效益等因素…...
NCC环境配置
一、后端配置 1.安装eclipse汉化插件 2.安装svn插件...
用python实现Dubins曲线生成
Dubins曲线是连接两个具有指定方向和位置的点的最短路径,其中路径受到固定曲率约束(如车辆的转向限制)。Dubins曲线常用于机器人路径规划、车辆轨迹规划等领域。 Dubins曲线可以分为三种类型:CCC (Curve-Curve-Curve), CCL (Curv…...
智能技术上的“是”并不代表具体领域的“应该”
技术上的“是”并不代表具体领域的“应该” 。技术上的“是”仅仅是指某种方法或技术在实践中是否可行或有效,而不涉及是否该采取这种方法或技术。决定是否采取某种方法或技术还需要考虑伦理、法律、可行性等其他方面的因素。技术的发展可能会有各种可能性ÿ…...
永热爱 敢向前 | Paraverse平行云的2023 年终总结
永热爱,敢向前 值此新年,回顾2023,仅以此句,献给所有XR产业信仰者 2023 年,是XR产业技术和场景承上启下的关键之年 在这场波澜壮阔的技术潮中 「Paraverse平行云」踏浪前行 已是第八个年头,让我们一起…...
c/c++的内存分配,详细说一下栈、堆和静态存储区
栈区(Stack):由编译器自动分配和回收,栈中存放函数调用的相关信息,栈帧(记录函数的栈帧开始的位置),参数,局部变量,返回地址。其操作方法类似于数据结构中的栈…...
每日构造题训练——C. Divan and bitwise operations
每日构造题训练 题目链接: 题目传送门 前置知识: 按位或运算 一、题意: 1 1 1、 有一个长度为 n n n的但是元素未知的数组 a a a, 给定 m m m个约束,每个约束都有 l , r , x l, r, x l,r,x, 并且满足 1 ≤ l ≤ r ≤ n , 1 ≤ x < 2 30 , a [ l ] ∣ a [ l 1 …...
【C++练级之路】【Lv.13】多态(你真的了解虚函数和虚函数表吗?)
快乐的流畅:个人主页 个人专栏:《C语言》《数据结构世界》《进击的C》 远方有一堆篝火,在为久候之人燃烧! 文章目录 一、虚函数与重写1.1 虚函数1.2 虚函数的重写1.3 重写的特例1.4 final和override(C11)1.…...
如何在Windows系统安装Node.js环境并制作html页面发布公网远程访问?
文章目录 前言1.安装Node.js环境2.创建node.js服务3. 访问node.js 服务4.内网穿透4.1 安装配置cpolar内网穿透4.2 创建隧道映射本地端口 5.固定公网地址 前言 Node.js 是能够在服务器端运行 JavaScript 的开放源代码、跨平台运行环境。Node.js 由 OpenJS Foundation࿰…...
C#,数值计算,希尔伯特矩阵(Hilbert Matrix)的算法与源代码
Hilbert, David (1862-1943) 1 希尔伯特(Hilbert) 德国数学家,在《几何学基础》中提出了第一套严格的几何公理(1899年)。他还证明了自己的系统是自洽的。他发明了一条简单的空间填充曲线,即埃里克魏斯汀的数学世界,即希尔伯特曲线,埃里克魏斯汀的数学世界,并证明了不…...
【C++教程从0到1入门编程】第八篇:STL中string类的模拟实现
一、 string类的模拟实现 下面是一个列子 #include <iostream> namespace y {class string{public: //string() //无参构造函数// :_str(nullptr)//{}//string(char* str) //有参构造函数// :_str(str)//{}string():_str(new char[1]){_str[0] \0;}string(c…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
