YOLOv9|加入2023Gold YOLO中的GD机制!遥遥领先!

专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,助力高效涨点!!!
一、Gold YOLO摘要
在过去的几年里,YOLO系列模型已经成为实时目标检测领域的领先方法。许多研究通过修改体系结构、增加数据和设计新的损失,将基线提高到了更高的水平。然而,我们发现以前的模型仍然存在信息融合问题,尽管特征金字塔网络(FPN)和路径聚合网络(PANet)已经缓解了这一问题。因此,本研究提供了一种先进的聚集和分布机制(GD)机制,该机制通过卷积和自注意操作来实现。这个新设计的模型名为Gold YOLO,它增强了多尺度特征融合能力,并在所有模型尺度上实现了延迟和准确性之间的理想平衡。

二、Gold YOLO模块详解
2.1 模块简介
Gold yolo的主要思想: 使用GD(gather-and-distribute)机制代替现有的通过不停间接迭代融合不同level的信息的机制。

GD由3种模块组成:FAM(Feature Alignment Module,特征对齐模块)、IFM(Information Fusion Module,信息融合模块)、Inject(Information Injection Module,信息注入模块)。其中FAM与IFM用于特征收集,Inject用于分发。

low-GD主要用于融合模型浅层的特征信息,取代原Neck中的FPN结构,输入为B2,B3,B4,B5的特征张量。输入的特征张量首先通过Low-FAM进行空间尺度对齐并拼接在一起,之后送入IFM模块。分别经过Conv、RepVGGBlock、Conv进行特征提取融合,最后Split,送入Inject模块。

high-GD主要用于融合模型深层的特征信息,取代原Neck中的FPN结构,输入为P3,P4,P5的特征张量。输入的特征张量首先通过High-FAM进行空间尺度对齐并拼接在一起,之后送入IFM模块。分别经过多头注意力机制和前向网络进行特征提取融合,最后Split,送入Inject模块。

Inject模块输入有两个,一个是x_local,一个是x_global,也就是GD中处理完的特征张量。通过图中的Conv与空间的缩放操作与x_local进行特征融合,融合方式主要为点积和相加。
三、 GD模块使用教程
3.1 GD模块的代码
3.2 在YOLO v9中的添加教程
3.3 运行配置文件
这部分文章暂不开源!
⭐现在入手仅$ 59.9,早入早发论文!⭐
联系QQ: 2668825911 ,欢迎交流!
本项目持续更新,不付费订阅也可关注等每周更新,每周开源1-2篇。
相关文章:
YOLOv9|加入2023Gold YOLO中的GD机制!遥遥领先!
专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,助力高效涨点!!! 一、Gold YOLO摘要 在过去的几年里,YOLO系列模型已经成为实时目标检测领域的领先方法。许多研究通过修改体系结构、增加数据和设计新的损…...
WRF模型运行教程(ububtu系统)--III.运行WRF模型(官网案例)
零、创建DATA目录 # 1.创建一个DATA目录用于存放数据(一般为fnl数据,放在Build_WRF目录下)。 mkdir DATA # 2.进入 DATA cd DATA 一、WPS预处理 在模拟之前先确定模拟域(即模拟范围),并进行数据预处理(…...
html和winform webBrowser控件交互并播放视频(包含转码)
1、 为了使网页能够与winform交互 将com的可访问性设置为真 [System.Security.Permissions.PermissionSet(System.Security.Permissions.SecurityAction.Demand, Name "FullTrust")][System.Runtime.InteropServices.ComVisibleAttribute(true)] 2、在webBrow…...
Neo4j 批量导入数据 从官方文档学习LOAD CSV 命令 小白可食用版
学习LOAD CSV🚀 在使用Neo4j进行大量数据导入的时候,发现如果用代码自动一行一行的导入效率过低,因此明白了为什么需要用到批量导入功能,在Neo4j中允许批量导入CSV文件格式,刚开始从网上的中看了各种半残的博客或者视频…...
Day43-2-企业级实时复制intofy介绍及实践
Day43-2-企业级实时复制intofy介绍及实践 1. 企业级备份方案介绍1.1 利用定时方式,实现周期备份重要数据信息。1.2 实时数据备份方案1.3 实时复制环境准备1.4 实时复制软件介绍1.5 实时复制inotify机制介绍1.6 项目部署实施1.6.1 部署环境准备1.6.2 检查Linux系统支…...
2024年AI辅助研发趋势深度解析:科技革新与效率提升的双重奏
随着人工智能技术的迅猛发展,AI辅助研发正逐渐成为科技界和工业界的热门话题。特别是在2024年,这一趋势将更加明显,AI辅助研发将在各个领域展现出强大的潜力和应用价值。 首先,AI辅助研发将进一步提升研发效率。传统的研发模式往…...
bash: mysqldump: command not found
问题:在linux上执行mysql备份的时候,出现此异常 mysqldump命令找不到 解决: 1、找到mysql目录(找到mysql可执行命令目录) which mysql 有图可知,mysql安装在: /usr1/local/java/mysql 2、my…...
hcie数通和云计算选哪个好?
1. 基础知识与技能要求 数通技术是网络技术的核心,它涉及到网络协议、路由交换、网络安全等多个方面。如果你是一名网络工程师或开发者,想要在数通领域有所建树,你需要具备扎实的基础知识和丰富的实战经验。 云计算则更注重于虚拟化、存储、网…...
浅易理解:非极大抑制NMS
什么是非极大抑制NMS 非极大值抑制(Non-Maximum Suppression,简称NMS)是一种在计算机视觉和图像处理领域中广泛使用的后处理技术,特别是在目标检测任务中。它的主要目的是解决目标检测过程中出现的重复检测问题,即对于…...
C语言如何进⾏字符数组的复制?
一、问题 有两个字符数组a和b,a的值是“Good Bye” ,b的值是 “Bye Bye”,现在要把b 复制到a中,使a变成“Bye Bye”,应该怎么做? 二、解答 在字符串操作中,字符串复制是⽐较常⽤的操作之⼀。在…...
Linux 中搭建 主从dns域名解析服务器
CSDN 成就一亿技术人! 作者主页:点击! Linux专栏:点击! CSDN 成就一亿技术人! ————前言———— 主从(Master-Slave)DNS架构是一种用于提高DNS系统可靠性和性能的配置方式。…...
CSS3病毒病原体图形特效
CSS3病毒病原体图形特效,源码由HTMLCSSJS组成,双击html文件可以本地运行效果,也可以上传到服务器里面 下载地址 CSS3病毒病原体图形特效代码...
Tomcat Web 开发项目构建教程
1下载Tomcat安装包,下载链接:Apache Tomcat - Welcome!,我电脑环境为JDK8,所以下载Tomcat9.0 2、下载完压缩包后,解压到指定位置 3.在intelij中新建一个项目 4.选中创建的项目,双击shift,输入add frame...然…...
Elasticsearch(9) gauss的使用
elasticsearch version: 7.10.1 在Elasticsearch中,gauss作为衰减函数(decay function)被用于function_score查询中,用于实现基于地理位置或其他数值字段的衰减权重评分。gauss衰减函数模拟了高斯分布,即距…...
php前端和java后端数据调用流程
php前端和java后端数据调用流程 前端 1、新建php页面title.php <title>标题</title> <td width"30%" class"form-key">标题内容</td> <td width"70%"><input type"text" class"form-control…...
C语言从入门到熟悉------第四阶段
指针 地址和指针的概念 要明白什么是指针,必须先要弄清楚数据在内存中是如何存储的,又是如何被读取的。如果在程序中定义了一个变量,在对程序进行编译时,系统就会为这个变量分配内存单元。编译系统根据程序中定义的变量类型分配…...
【目标检测-数据集准备】DIOR转为yolo训练所需格式
【目标检测】DIOR遥感影像数据集,转为yolo系列模型训练所需格式。 标签文件位于Annotations下,格式为xml,yolo系列模型训练所需格式为txt,格式为 class_id x_center,y_center,w,h其中,train,textÿ…...
Nacos为什么对于临时实例采用心跳检测,非临时实例采用主动询问?Nacos同时作为配置中心和注册中心有什么坏处?为什么Nacos可以抗住那么高的注册?
Nacos为什么对于临时实例采用心跳检测,非临时实例采用主动询问? Nacos 对于临时实例采用心跳检测,而对于非临时实例采用主动询问,这两种不同的健康检查机制是为了满足不同场景下的服务发现需求。具体分析如下: 临时实例的心跳检测…...
【NLP】如何实现快速加载gensim word2vec的预训练的词向量模型
1 问题 通过以下代码,实现加载word2vec词向量,每次加载都是几分钟,效率特别低。 from gensim.models import Word2Vec,KeyedVectors# 读取中文词向量模型(需要提前下载对应的词向量模型文件) word2vec_model KeyedV…...
前端实例:页面布局1(后端数据实现)
效果图 注:这里用到后端语言php(页面是.php文件),提取纯html也可以用 inemployee_index.php <?php include(includes/session.inc); $Title _(内部员工首页); $ViewTopic 内部员工首页; $BookMark 内部员工首页; include(includes/…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
认识CMake并使用CMake构建自己的第一个项目
1.CMake的作用和优势 跨平台支持:CMake支持多种操作系统和编译器,使用同一份构建配置可以在不同的环境中使用 简化配置:通过CMakeLists.txt文件,用户可以定义项目结构、依赖项、编译选项等,无需手动编写复杂的构建脚本…...
Neko虚拟浏览器远程协作方案:Docker+内网穿透技术部署实践
前言:本文将向开发者介绍一款创新性协作工具——Neko虚拟浏览器。在数字化协作场景中,跨地域的团队常需面对实时共享屏幕、协同编辑文档等需求。通过本指南,你将掌握在Ubuntu系统中使用容器化技术部署该工具的具体方案,并结合内网…...
鸿蒙HarmonyOS 5军旗小游戏实现指南
1. 项目概述 本军旗小游戏基于鸿蒙HarmonyOS 5开发,采用DevEco Studio实现,包含完整的游戏逻辑和UI界面。 2. 项目结构 /src/main/java/com/example/militarychess/├── MainAbilitySlice.java // 主界面├── GameView.java // 游戏核…...
