当前位置: 首页 > news >正文

【机器学习300问】34、决策树对于数值型特征如果确定阈值?

        还是用之前的猫狗二分类任务举例(这个例子出现在【机器学习300问】第33问中),我们新增一个数值型特征(体重),下表是数据集的详情。如果想了解更多决策树的知识可以看看我之前的两篇文章:

【机器学习300问】28、什么是决策树?icon-default.png?t=N7T8http://t.csdnimg.cn/Tybfj

【机器学习300问】33、决策树是如何进行特征选择的?icon-default.png?t=N7T8http://t.csdnimg.cn/iaxSA 这里我就不赘述啦,直接进入正题。

 如果我选择用体重特征作为根节点的决策策略,那么我们会面临这样一个问题。

一、什么阈值才能更好的区分数据集?

        所用到的工具还是信息增益,我们可以将一些列可能比较不错的能区分数据集的阈值列举出来,例如,在连续数值区间上,可以测试每个唯一值或者每隔一定步长选取值作为潜在的阈值,画出下面这样的一幅图。

  • 首先,遍历数据集中所有猫和狗的体重值
  • 对于每一个可能的体重阈值,将样本集划分为两个子集:一组是体重低于该阈值的动物,另一组是体重等于或高于该阈值的动物
  • 计算划分前的数据集的信息熵以及每个子集的信息熵,并根据子集内样本数目的比例加权求和得到条件熵(就像下面这幅图中所示)
  • 通过比较不同阈值下所对应的信息增益,选择信息增益最大的那个阈值作为分割点

在这个例子中我们最终选定了,体重<=9,作为最合适的阈值,因为此时的信息增益最大。

二、如何停止决策树的分叉?

        这里再讲一个知识点,虽然这个知识点和题目无关(偷笑),但因为讲到了信息增益所以补充一个通过信息增益停止构建决策树防止过拟合的方法。决策树停止分叉(即停止生长或停止构建子节点)的常见条件包括但不限于以下几种:

  1. 最大深度限制:预先设定一个整数值,作为决策树的最大允许深度。当当前节点所在的分支达到这个深度时,无论当前节点的信息增益或其他指标如何,都不再进行分割。

  2. 最小节点样本数:规定每个内部节点(非叶子节点)所包含的最少样本数量,若某节点划分后某个子节点中的样本数量小于这个阈值,则不再继续分割。

  3. 信息增益阈值设置一个信息增益的最小值,如果某个特征划分数据集后的信息增益低于此阈值,则停止该节点的进一步划分

  4. 叶子节点数目限制:可以设定决策树允许的最大叶子节点数量,当到达这个数量时停止构建新节点。

  5. 无更多可分特征:所有特征都已经被用于划分,并且当前节点下的样本已经无法通过剩余特征得到更优的划分结果。

相关文章:

【机器学习300问】34、决策树对于数值型特征如果确定阈值?

还是用之前的猫狗二分类任务举例&#xff08;这个例子出现在【机器学习300问】第33问中&#xff09;&#xff0c;我们新增一个数值型特征&#xff08;体重&#xff09;&#xff0c;下表是数据集的详情。如果想了解更多决策树的知识可以看看我之前的两篇文章&#xff1a; 【机器…...

计算机二级(Python)真题讲解每日一题:《绘制雪花》

在横线处填写代码&#xff0c;完成如下功能‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬…...

Rust 的 Arc<Mutex<T>> 的用法示例源代码

在 Rust 中&#xff0c;Arc<Mutex<T>> 是一种组合类型&#xff0c;它结合了 Arc&#xff08;原子引用计数&#xff09;和 Mutex&#xff08;互斥锁&#xff09;。Arc 用于在多个所有者之间共享数据&#xff0c;而 Mutex 用于确保在任意时刻只有一个线程可以访问被保…...

【NR 定位】3GPP NR Positioning 5G定位标准解读(十六)-UL-AoA 定位

前言 3GPP NR Positioning 5G定位标准&#xff1a;3GPP TS 38.305 V18 3GPP 标准网址&#xff1a;Directory Listing /ftp/ 【NR 定位】3GPP NR Positioning 5G定位标准解读&#xff08;一&#xff09;-CSDN博客 【NR 定位】3GPP NR Positioning 5G定位标准解读&#xff08;…...

如何理解闭包

闭包是编程语言中一个重要的概念,特别是在函数式编程中常常会遇到。以下是对闭包的理解: 1. 定义: 闭包是一种函数,它引用了在其定义范围之外的自由变量(非全局变量),并且这些引用的变量在函数被调用时仍然保持活跃状态。2. 构成: 闭包通常由两部分组成:内部函数(函…...

python知识点总结(一)

这里写目录标题 一、什么是WSGI,uwsgi,uWSGI1、WSGI2、uWSGI3、uwsgi 二、python中为什么没有函数重载&#xff1f;三、Python中如何跨模块共享全局变量?四、内存泄露是什么?如何避免?五、谈谈lambda函数作用?六、写一个函数实现字符串反转&#xff0c;尽可能写出你知道的所…...

【Poi-tl Documentation】区块对标签显示隐藏改造

前置说明&#xff1a; <dependency><groupId>com.deepoove</groupId><artifactId>poi-tl</artifactId><version>1.12.1</version> </dependency>模板&#xff1a; 删除行表格测试.docx 改造前测试效果 package run.siyuan…...

第十四届蓝桥杯 三国游戏

一开始的思路就是想着暴力&#xff0c;但是呢&#xff0c;如果真的用暴力一个一个列的话&#xff0c;连30%的数据都搞定不了&#xff0c;所以这里需要考虑别的办法。 这道题的思路就是贪心。 我们这样想&#xff1a;既然要满足至少一个国X>YZ&#xff0c;那么我们何不变成…...

数据结构——通讯录项目

1.通讯录的介绍 顺序表是通讯录的底层结构。 通讯录是将顺序表的类型替换成结构体类型来储存用户数据&#xff0c;通过运用顺序表结构来实现的。 用户数据结构&#xff1a; typedef struct PersonInfo {char name[12];char sex[10];int age;char tel[11];char addr[100]; }…...

学点Java打小工_Day4_数组_冒泡排序

1 数组基本概念 程序算法数据结构 算法&#xff1a;解决程序的流程步骤 数据结构&#xff1a;将数据按照某种特定的结构来存储 设计良好的数据结构会导致良好的算法。 ArrayList、LinkedList 数组是最简单的数据结构。 数组&#xff1a;存放同一种类型数据的集合&#xff0c;在…...

内存分配方式?

内存分配方式主要有三种&#xff1a; 静态存储区分配&#xff1a;这种方式在程序编译的时候就已经分配好内存&#xff0c;并且这块内存在程序的整个运行期间都存在。全局变量和静态变量通常就是在静态存储区分配的。这种分配方式效率高&#xff0c;因为内存在程序开始执行前就已…...

2024/3/17周报

文章目录 摘要Abstract文献阅读题目引言模型架构编码器和解码器堆栈AttentionPosition-wise Feed-Forward NetworksEmbeddings and SoftmaxPositional Encoding 实验数据实验结果 深度学习TransformerEncoderDecoder 总结 摘要 本周阅读了Transformer的开山之作《Attention Is…...

函数连续性和Lipschitz连续性

摘要&#xff1a; 直观上&#xff0c;Lipschitz连续性的含义是函数图像的变化速度有一个全局的上限&#xff0c;即函数的增长速率不会无限增加。这种性质确保了函数在任何地方都不会过于陡峭&#xff0c;有助于分析函数的行为&#xff0c;并且在优化、动力系统理论、机器学习等…...

Qt 鼠标滚轮示例

1.声明 void wheelEvent(QWheelEvent *event) override;2.实现&#xff08;方便复制、测试起见用静态变量&#xff09; #include <mutex> void MainWindow::wheelEvent(QWheelEvent *event) {static QLabel *label new QLabel("Zoom Level: 100%", this);st…...

【Unity】进度条和血条的三种做法

前言 在使用Unity开发的时候&#xff0c;进度条和血条是必不可少的&#xff0c;本篇文章将简单介绍一下几种血条的制作方法。 1.使用Slider Slider组件由两部分组成&#xff1a;滑动区域和滑块。滑动区域用于显示滑动条的背景&#xff0c;而滑块则表示当前的数值位置。用户可…...

多人聊天室 (epoll - Linux网络编程)

文章目录 零、效果展示一、服务器代码二、客户端代码三、知识点1.connect()2.socket()3.bind()4.send()5.recv() 四、改进方向五、跟练视频 零、效果展示 一个服务器作为中转站&#xff0c;多个客户端之间可以相互通信。至少需要启动两个客户端。 三个客户端互相通信 一、服务…...

vite配置

"vite": "^5.1.4" resolve.alias&#xff1a;配置别名 1、执行npm install -D types/node 或者 yarn add types/node -D 2、以下配置代表访问src时可以用“”代替 resolve: {alias: {"": path.resolve(__dirname, "./src"),},}, 使…...

服务器生产环境问题解决思路

游戏服务器开发节奏比较快,版本迭代很频繁,有一些项目甚至出现了周更新(每周准时停服更新维护)。由于功能开发时间短,研发人员本身技术能力等原因,线上出现bug很常见。笔者经历过的游戏项目,一年到头没几次更新不出现bug的(当然,配置问题也算bug)。那当出现bug,我们…...

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:Column)

沿垂直方向布局的容器。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 可以包含子组件。 接口 Column(value?: {space?: string | number}) 从API version 9开始&#xff0c;该接口…...

LLM之RAG实战(三十)| 探索RAG语义分块策略

在LLM之RAG实战&#xff08;二十九&#xff09;| 探索RAG PDF解析解析文档后&#xff0c;我们可以获得结构化或半结构化的数据。现在的主要任务是将它们分解成更小的块来提取详细的特征&#xff0c;然后嵌入这些特征来表示它们的语义&#xff0c;其在RAG中的位置如图1所示&…...

7.4.分块查找

一.分块查找的算法思想&#xff1a; 1.实例&#xff1a; 以上述图片的顺序表为例&#xff0c; 该顺序表的数据元素从整体来看是乱序的&#xff0c;但如果把这些数据元素分成一块一块的小区间&#xff0c; 第一个区间[0,1]索引上的数据元素都是小于等于10的&#xff0c; 第二…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...