Chapter 13 Techniques of Design-Oriented Analysis: The Feedback Theorem
Chapter 13 Techniques of Design-Oriented Analysis: The Feedback Theorem
从这一章开始讲负反馈Control系统和小信号建模.
13.2 The Feedback Theorem
首先介绍 Middlebrook’s Feedback Theorem
考虑下面负反馈系统
传输函数 G=uo/ui
G ( s ) = u o u i = G ∞ T 1 + T + G 0 1 1 + T G(s)=\frac{u_{o}}{u_{i}}=G_{\infty }\frac{T}{1+T}+G_{0}\frac{1}{1+T} G(s)=uiuo=G∞1+TT+G01+T1
T为Loop Gain 环路的增益
T ( s ) = u y ( s ) u x ( s ) ∣ u i = 0 T(s)=\frac{u_{y}(s)}{u_{x}(s)}\bigg|_{ui=0} T(s)=ux(s)uy(s) ui=0
ideal forward gain 理想正向增益, G_inf为通过uz 消除(null) uy后, ui到uo的传输函数.
G_inf其实就是利用运放虚短和虚断来推导Vout/Vin
G ∞ ( s ) = u o ( s ) u i ( s ) ∣ u y → 0 G_{\infty }(s)=\frac{u_{o}(s)}{u_{i}(s)}\bigg|_{u_y\to 0} G∞(s)=ui(s)uo(s) uy→0
当Loop Gain T-> inf时, G=G_inf
G0为通过uz 消除(null) ux后, ui到uo的传输函数
G 0 ( s ) = u o ( s ) u i ( s ) ∣ u x → 0 G_{0}(s)=\frac{u_{o}(s)}{u_{i}(s)}\bigg|_{u_x\to 0} G0(s)=ui(s)uo(s) ux→0
当Loop Gain T-> 0时, G=G0
Null loop Gain Tn(s): 引入Uz来消除null uo(s)
T n ( s ) = u y ( s ) u x ( s ) ∣ u 0 → 0 T_n(s)=\frac{u_{y}(s)}{u_{x}(s)}\bigg|_{u_0\to 0} Tn(s)=ux(s)uy(s) u0→0
T n ( s ) T ( s ) = G ∞ ( s ) G 0 ( s ) \frac{T_n (s)}{T(s)}=\frac{G_\infty (s)}{G_0(s)} T(s)Tn(s)=G0(s)G∞(s)
13.3 Example: Op Amp PD Compensator Circuit
我们以下面负反馈op-amp为例
假设运放为单极点系统
G o p ( s ) = G o p 0 ( 1 + s ω 1 ) G_{op}(s)=\frac{G_{op0}}{(1+\frac{s}{\omega_1})} Gop(s)=(1+ω1s)Gop0
Voltage injection模型为
Ideal forward gain: 其实就是利用运放虚短和虚断来推导Vout/Vin, 即G_inf
G ∞ ( s ) = v o u t ( s ) v i n ( s ) ∣ v y → 0 G_{\infty }(s)=\frac{v_{out}(s)}{v_{in}(s)}\bigg|_{v_y\to 0} G∞(s)=vin(s)vout(s) vy→0
vy null to 0, 因此op输入端v-也被null to 0.
我们可以用运放的虚短和虚断特性来推导vout/vin. v- = v+ = 0即virtual ground
Loop Gain, T(s) 环路的增益.
T ( s ) = v o u t v x v − v o u t v y v − T(s)=\frac{v_{out}}{v_{x}}\frac{v{^-}}{v_{out}}\frac{v_y}{v{^-}} T(s)=vxvoutvoutv−v−vy
前两项就是电阻电容的voltage divider传输函数, 第三项为Gop
G0为调节Vz, 从而Vx nulled to 0. 即运放输出为0
G 0 ( s ) = v o u t ( s ) v i n ( s ) ∣ v x → 0 G_{0}(s)=\frac{v_{out}(s)}{v_{in}(s)}\bigg|_{v_x\to 0} G0(s)=vin(s)vout(s) vx→0
因此G0也是电阻电容的voltage divider传输函数
Tn为null output的loop gain
T n ( s ) = v y ( s ) v x ( s ) ∣ v o u t → 0 T_{n }(s)=\frac{v_{y}(s)}{v_{x}(s)}\bigg|_{v_{out}\to 0} Tn(s)=vx(s)vy(s) vout→0
因此Loop Gain可推导为
T ( s ) = G 0 ( s ) T n ( s ) G ∞ ( s ) T(s)=\frac{G_{0}(s)T_{n}(s)}{G_{\infty }(s)} T(s)=G∞(s)G0(s)Tn(s)
最终Transfer Function, G= Vout/Vin
G ( s ) = v o u t v i n = G ∞ T 1 + T + G 0 1 1 + T G(s)=\frac{v_{out}}{v_{in}}=G_{\infty }\frac{T}{1+T}+G_{0}\frac{1}{1+T} G(s)=vinvout=G∞1+TT+G01+T1
f<30MHz, G0/(1+T)很小,
当f<fc (crossover frequency),G = G_inf
当f>fc (crossover frequency), G和G_inf差异很大
13.4 Example: Closed-Loop Regulator
Chapter 14 Circuit Averaging, Averaged Switch Modeling, and Simulation
这一章讲电路的平均化 Circuit averaging.
其核心思想就是把switch+diode替换成理想开关, 然后加上小信号模型
buck, boost, general two-switch的小信号模型如下
这样就能推导出converter的小信号模型了
对于电力电子系统的设计和仿真, 分为三种:
- 利用自带的器件库, 采用Cadence, SPICE, LTSpice等工具进行transient仿真. 好处精度高, 坏处费时费力.
- 简化器件模型, MOS换成Ron, 用PLECS and SIMPLIS仿真
- 平均化模型. 研究steady-state下电压,电流波形, 忽略ripple. 研究小信号模型. 可以给设计insight提供指导.
相关文章:

Chapter 13 Techniques of Design-Oriented Analysis: The Feedback Theorem
Chapter 13 Techniques of Design-Oriented Analysis: The Feedback Theorem 从这一章开始讲负反馈Control系统和小信号建模. 13.2 The Feedback Theorem 首先介绍 Middlebrook’s Feedback Theorem 考虑下面负反馈系统 传输函数 Guo/ui G ( s ) u o u i G ∞ T 1 T G…...

科研学习|论文解读——美国政治经济中的权力:网络分析(JASIST, 2019)
论文原题目 Power in the U.S. political economy: A network analysis 摘要 美国政治经济的许多特征产生于大型政治和经济机构之间的互动,然而我们对它们的互动性质和这些机构之间的权力分配知之甚少。在本文中,对总部设在美国的组织的网络进行了详细的…...
常用的git命令
一、常用的git命令 1. 配置 git config --local user.name "xxx" ---仅对当前Git仓库有效。配置信息将保存在当前Git仓库的 .git/config 文件中 local优先级最高,会覆盖其他范围的相同配置 git config --global user.email "xxx" ---全局…...

【AI】用iOS的ML(机器学习)创建自己的AI App
用iOS的ML(机器学习)创建自己的AI App 目录 用iOS的ML(机器学习)创建自己的AI App机器学习如同迭代过程CoreML 的使用方法?软件要求硬件开始吧!!构建管道:设计和训练网络Keras 转 CoreML将模型集成到 Xcode 中结论推荐超级课程: Docker快速入门到精通Kubernetes入门到…...
远程调用初体验笔记
远程调用初体验笔记 微服务架构通常将系统拆分成多个独立的服务单元,每个服务单元都专注于实现特定的业务功能。当一个服务需要使用另一个服务提供的功能时,就可以通过远程调用来实现。 使用步骤 1.步骤 Spring给我们提供了一个RestTemplate工具&#…...

反无人机电子护栏:原理、算法及简单实现
随着无人机技术的快速发展,其在航拍、农业、物流等领域的应用日益广泛。然而,无人机的不规范使用也带来了安全隐患,如侵犯隐私、干扰航空秩序等。为了有效管理无人机,反无人机电子护栏技术应运而生。 目录 一、反无人机电子护栏…...
Java项目利用Redisson实现真正生产可用高并发秒杀功能 支持分布式高并发秒杀
Java中的高并发秒杀场景下我们可以使用redisson来实现高并发秒杀功能, 以下就是一个可用于生产环境的高并发秒杀示例代码: pom依赖 <!-- https://mavenlibs.com/maven/dependency/org.redisson/redisson --><dependency><groupId>org.redisson</groupId&…...
0104行列式的性质-行列式-线性代数
记 D ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ∣ D\begin{vmatrix}a_{11}&a_{12}&\cdots &a_{1n}\\a_{21}&a_{22}&\cdots&a_{2n}\\\cdots&\cdots&&\cdots\\a_{n1}&a_{n2}&\cdots&a_{nn}\en…...
k8s HPA 自动伸缩机制 (配置,资源限制,)
目录 一、概念 核心概念 工作原理 HPA 的配置关键参数 关键组件 使用场景 注意事项 如何确保程序稳定和服务连续 二、metrics-server 部署 metrics-server 准备 metrics-server 镜像: 使用 Helm 安装 metrics-server: 配置 metrics-server: 安装 metrics-server: …...

vulhub中GIT-SHELL 沙盒绕过漏洞复现(CVE-2017-8386)
GIT-SHELL 沙盒绕过(CVE-2017-8386)导致任意文件读取、可能的任意命令执行漏洞。 测试环境 为了不和docker母机的ssh端口冲突,将容器的ssh端口设置成3322。本目录下我生成了一个id_rsa,这是ssh的私钥,连接的时候请指…...

SpringBoot+vue3打造企业级一体化SaaS系统
SpringBootvue3打造企业级一体化SaaS系统 简介: 全面提升前后端技术水平,独立完成全栈项目开发能力,快速进击全栈工程师,最终在面试中脱颖而出。整合后端主流技术(Spring Boot、物理数据库隔离、加载动态权限、多…...

探讨TCP的可靠性以及三次握手的奥秘
🌟 欢迎来到 我的博客! 🌈 💡 探索未知, 分享知识 !💫 本文目录 1. TCP的可靠性机制1.2可靠性的基础上,尽可能得提高效率 2. TCP三次握手过程3. 为何不是四次握手? 在互联网的复杂世界中,TCP&am…...
openai常见的两个错误:BadRequestError和OpenAIError
错误1:openai.OpenAIError: The api_key client option must be set either by passing api_key..... 在通过openai创建客户端必须要设置api key,如果你事先已经在本机的环境中设置未起效可以手动设置,注意手动设置时不要用下面的形式 import openai f…...

2核4g服务器够用吗?
2核4G服务器够用吗?够用。阿腾云以2核4G5M服务器搭建网站为例,5M带宽下载速度峰值可达640KB/秒,阿腾云以搭建网站为例,假设优化后平均大小为60KB,则5M带宽可支撑10个用户同时在1秒内打开网站,并发数为10&am…...

数据仓库数据分层详解
数据仓库中的数据分层是一种重要的数据组织方式,其目的是为了在管理数据时能够对数据有一个更加清晰的掌控。以下是数据仓库中的数据分层详解: 原始数据层(Raw Data Layer):这是数仓中最底层的层级,用于存…...

unity内存优化之AB包篇(微信小游戏)
1.搭建资源服务器使用(HFS软件(https://www.pianshen.com/article/54621708008/)) using System.Collections; using System.Collections.Generic; using UnityEngine;using System;public class Singleton<T> where T : class, new() {private static readonly Lazy<…...

白话模电:3.三极管(考研面试与笔试常考问题)
一、三极管的简单判断 1.判断三极 1)给了图 左边是b,有箭头是e,剩下是c 2)给了电位 b:中间值,e:较近值(离中间值),c:较远值(离中间值) 2.判断流向 bc同向(共同流向“|”或共同流离“|”),e与bc反向 3.判断材料 4.判断类型 5.判断能否构…...
LeetCode 395. 至少有K个重复字符的最长子串
解题思路 一道滑动窗口题型,不过滑动窗口的长度是不同种类元素的个数。 这里需要定义两个变量 cnt,overk。overk表示的是满足大于k的字符数, cnt表示的是该窗口中不同元素的个数且cnt>1&&cnt<26。 相关代码 class Solution {public int longestSub…...

C#重新认识笔记_ FixUpdate + Update
C#重新认识笔记_ FixUpdate Update Update: 刷新频率不一致,非物理对象的移动,简单的刷新可用, FixedUpdate: 刷新频率一致,按照固定频率刷新,一般调用FixedUpdate之后,会立即进入必要的物理计算中,因此,任何影响刚…...

Django 解决新建表删除后无法重新创建等问题
Django 解决新建表删除后无法重新创建等问题 问题发生描述处理办法首先删除了app对应目录migrations下除 __init__.py以外的所有文件:然后,删除migrations中关于你的app的同步数据数据库记录最后,重新执行迁移插入 问题发生描述 Django创建的表…...

SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...

C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...
鸿蒙(HarmonyOS5)实现跳一跳小游戏
下面我将介绍如何使用鸿蒙的ArkUI框架,实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...

一些实用的chrome扩展0x01
简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序,无论是测试应用程序、搜寻漏洞还是收集情报,它们都能提升工作流程。 FoxyProxy 代理管理工具,此扩展简化了使用代理(如 Burp…...