转置卷积(transposed-conv)
一、什么是转置卷积
1、转置卷积的背景
通常,对图像进行多次卷积运算后,特征图的尺寸会不断缩小。而对于某些特定任务 (如图像分割和图像生成等),需将图像恢复到原尺寸再操作。这个将图像由小分辨率映射到大分辨率的尺寸恢复操作,叫做上采样 (Upsample),如下图所示:

对于上采样(up-sampling)操作,目前有着一些插值方法进行处理:
- 最近邻插值(Nearest neighbor interpolation)
- 双线性插值(Bi-Linear interpolation)
- 双立方插值(Bi-Cubic interpolation)
然而,这些上采样方法都是基于人们的先验经验来设计的,在很多场景中效果并不理想 (如:规则固定、不可学习)。因此,我们希望神经网络自己学习如何更好地插值,即接下来要介绍的转置卷积。 与传统的上采样方法相比,转置卷积的上采样方式并非预设的插值方法,而是同标准卷积一样,具有可学习的参数,可通过网络学习来获取最优的上采样方式。
2、对反卷积的误解
曾经,转置卷积又称反卷积 (Deconvolution)。zfnet在他们可视化的时候,利用到了《Zeiler, M., Taylor, G., and Fergus, R. Adaptive deconvolutional networks for mid and high level featurelearning. In ICCV, 2011》这篇论文中的反卷积操作,进行特征图的可视化,那什么是deconv操作呢?实际上deconv是有误导性的,令人误认为是卷积的逆运算,实际上cnn的卷积是不可逆的,deconv实际上是转置卷积(Transposed Convolution),是对矩阵进行上采样的一种方法。deconv的作用一般有以下几种:
(1)unsupervised learning(无监督学习):其实就是covolutional sparse coding:这里的deconv只是观念上和传统的conv反向,传统的conv是从图片生成feature map,而deconv是用unsupervised的方法找到一组kernel和feature map,让它们重建图片。
(2)CNN可视化:通过deconv将CNN中conv得到的feature map还原到像素空间,以观察特定的feature map对哪些pattern的图片敏感,这里的deconv其实不是conv的可逆运算,只是conv的transpose,所以tensorflow里一般取名叫transpose_conv。
(3)upsampling(上采样):在pixel-wise prediction比如image segmentation以及image generation中,由于需要做原始图片尺寸空间的预测,而卷积由于stride往往会降低图片size, 所以往往需要通过upsampling的方法来还原到原始图片尺寸,deconv就充当了一个upsampling的角色。在语义分割中,会在编码器中用卷积层提取特征,然后在解码器中恢复原先尺寸,从而对原图中的每个像素分类。该过程同样需用转置卷积。经典方法有 FCN 和 U-Net。
未完待续...
相关文章:
转置卷积(transposed-conv)
一、什么是转置卷积 1、转置卷积的背景 通常,对图像进行多次卷积运算后,特征图的尺寸会不断缩小。而对于某些特定任务 (如图像分割和图像生成等),需将图像恢复到原尺寸再操作。这个将图像由小分辨率映射到大分辨率的尺寸恢复操作,…...
P1481 魔族密码
P1481 魔族密码 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 字典树 在插入字符串 s s s时,不断记录 s 0... k s_{0...k} s0...k的个数取最大即可。 #include <bits/stdc.h> using namespace std; const int N 1e5 21; int cnt[N], tr[N][30], idx,…...
无人机/飞控--ArduPilot、PX4学习记录(2)
这是一篇碎碎念,零零碎碎的记录了环境配置过程,仅供本人记录学习历程和参考。(记录的挺乱的,但是文章链接里的博客写的是真好) 本章主要完成的目标: 安装PX4 并 成功运行出3D无人机界面。 参考文章: 搭建PX4环境&…...
【Arxml专题】-29-使用Cantools将CAN Matrix Arxml自动生成C语言代码
目录 1 安装Python和Cantools 1.1 查看Python已安装的Package包 1.2 在Python中安装Cantools插件包 1.3 获取更多Cantools工具的更新动态 2 CAN Matrix Arxml自动生成C语言代码 2.1 批处理文件CAN_Matrix_Arxml_To_C.bat内容说明 2.2 CAN Matrix Arxml文件要求 2.3 如何…...
【id:21】【20分】E. 抄袭查找(结构体+指针+函数)
题目描述 已知一群学生的考试试卷,要求对试卷内容进行对比,查找是否有抄袭。 每张试卷包含:学号(整数类型)、题目1答案(字符串类型)、题目2答案(字符串类型)、题目3答案…...
ASP.NET-常用控件总结
一、ASP.NET基础控件 1、asp:TextBox (输入框) ASP.NET TextBox 控件用于接收用户输入。 <asp:TextBox ID"txtInput" runat"server"></asp:TextBox>2、asp:DropDownList (下拉框) ASP.NET DropDownList 控件用于提供一个下拉列表供用户选择…...
SpringBoot3整合Mybatis-Plus与PageHelper包冲突解决
😊 作者: 一恍过去 💖 主页: https://blog.csdn.net/zhuocailing3390 🎊 社区: Java技术栈交流 🎉 主题: SpringBoot3整合Mybatis-Plus与PageHelper包冲突解决 ⏱️ 创作时间&a…...
MQTT Keep Alive机制
MQTT 协议是承载于 TCP 协议之上的, 而 TCP 协议以连接为导向, 在连接双方之间, 提供稳定、 有序的字节流功能。 但是, 在部分情况下, TCP 可能出现半连接问题。 所谓半连接, 是指某一方的连接已经断开或者…...
基于springboot+vue的游戏交易系统
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 主要内容:毕业设计(Javaweb项目|小程序|Pyt…...
高职(大专)结构化面试之答题思路
目录 一、岗位认知 二、职教热点 三、教育教学 四、人际关系 五、组织管理 六、应急应变 七、时政与教育 八、专业知识 一、岗位认知 考试方向:主要考察对岗位的全面认识、职业目标、职业规划、职业理想。 必背题目: 1.“你为什么要报考我们学校的教师岗…...
Python基础学习笔记(一)
Python简介 Python 语言是一种跨平台、开源、免费、解释型、面向对象、动态数据类型的高级程序设计语言。早期版本的 Python 被称作是 Python1;Python2 最后一个版本是 2.7;Python3 是目前最活跃的版 本,基本上新开发的 Python 代码都会支持…...
机器学习-可解释性机器学习:支持向量机与fastshap的可视化模型解析
一、引言 支持向量机(Support Vector Machine, SVM)作为一种经典的监督学习方法,在分类和回归问题中表现出色。其优点之一是生成的模型具有较好的泛化能力和可解释性,能够清晰地展示特征对于分类的重要性。 fastshap是一种用于快速计算SHAP值(…...
32.768K晶振X1A000141000300适用于无人驾驶汽车电子设备
科技的发展带动电子元器件的发展电子元器件-“晶振”为现代的科技带来了巨大的贡献,用小小的身体发挥着大大的能量。 近两年无人驾驶汽车热度很高,不少汽车巨头都已入局。但这项技术的难度不小,相信在未来几年里,无人驾驶汽车这项…...
利用autodl服务器跑模型
1. 租用服务器 本地改模型 服务器 将改进好的、数据集处理好的模型压缩为zip文件上传到阿里云盘打开服务器AUTODL服务器,在主页中选择容器实例 在此位置进行开关机操作,若停止服务器,必须关机,不然会一直扣钱 2. 运行模型 选择…...
【微服务】分布式调度框架PowerJob使用详解
目录 一、前言 二、定时任务调度框架概述 2.1 为什么需要定时任务调度框架 2.2 定时任务调度使用场景 三、PowerJob 介绍 3.1 PowerJob 概述 3.2 PowerJob 功能特性 3.3 PowerJob 应用场景 3.4 PowerJob 与其他同类产品对比 四、PowerJob 部署 4.1 PowerJob 架构 4.…...
一命通关广度优先遍历
前言 在这篇文章之前,已对非线性结构遍历的另一种方法——深度优先遍历进行了讲解,其中很多概念词都是共用的。为了更好的阅读体验,最好先在掌握或起码了解dfs的基础上,再来阅读本文章,否则因为会有很多概念词看不明白…...
力扣4寻找两个正序数组的中位数
1.实验内容 给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。 2.实验目的 算法的时间复杂度应该为 O(log (mn)) 。 3.基本思路 碰到时间复杂度要求log的,肯定用二分查找&…...
jmeter之常用函数-第六天
1.常见函数: _counter 计数器函数 TRUE(每个用户都有自己的计数器) FALSE(所有用户共用一个计数器) _Random 随机数函数 参数1:取值范围最小值(包含) 参数2:取值范围最大值(包含) _time 获取当前时间的函数 无参: 获取的是距离 1970/01/01 00:00:00 的毫秒值 参…...
原创!分解+集成思想新模型!VMD-CNN-BiGRU-Attention一键实现时间序列预测!以风速数据集为例
声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~ 目录 数据介绍 模型流程 创新点 结果展示 部…...
ab (Apache benchmark) - 压力/性能测试工具
Apache benchmark(ab) 安装window安装使用方法 - bin目录运行使用方法 - 任意目录运行 linux安装 基本命令介绍常用参数:输出结果分析: ab的man手册 安装 window安装 官网下载链接:https://www.apachehaus.com/cgi-bin/download…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
