当前位置: 首页 > news >正文

每日OJ题_子数组子串dp⑥_力扣978. 最长湍流子数组

目录

力扣978. 最长湍流子数组

解析代码


力扣978. 最长湍流子数组

978. 最长湍流子数组

难度 中等

给定一个整数数组 arr ,返回 arr 的 最大湍流子数组的长度 

如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是 湍流子数组 。

更正式地来说,当 arr 的子数组 A[i], A[i+1], ..., A[j] 满足仅满足下列条件时,我们称其为湍流子数组

  • 若 i <= k < j :
    • 当 k 为奇数时, A[k] > A[k+1],且
    • 当 k 为偶数时,A[k] < A[k+1]
  • 或 若 i <= k < j :
    • 当 k 为偶数时,A[k] > A[k+1] ,且
    • 当 k 为奇数时, A[k] < A[k+1]

示例 1:

输入:arr = [9,4,2,10,7,8,8,1,9]
输出:5
解释:arr[1] > arr[2] < arr[3] > arr[4] < arr[5]

示例 2:

输入:arr = [4,8,12,16]
输出:2

示例 3:

输入:arr = [100]
输出:1

提示:

  • 1 <= arr.length <= 4 * 10^4
  • 0 <= arr[i] <= 10^9
class Solution {
public:int maxTurbulenceSize(vector<int>& arr) {}
};

解析代码

题意的湍流数组就是一上一下的意思,只有一个元素时长度为1。

先尝试定义状态表示为:dp[i] 表示以 i 位置为结尾的最长湍流数组的长度

        但是,问题来了,如果状态表示这样定义的话,以 i 位置为结尾的最长湍流数组的长度我们没法从之前的状态推导出来。因为我们不知道前一个最长湍流数组的结尾处是递增的,还是递减的。因此,我们需要状态表示能表示多一点的信息:要能让我们知道这一个最长湍流数组的结尾是递增的还是递减的。

因此需要两个 dp 表:

  • f[i] 表示:以i位置元素为结尾的所有子数组中,最后呈现上升状态下的最湍流数组的度。
  • g[i] 表示:以i位置元素为结尾的所有子数组中,最后呈现下降状态下的最湍流数组的

状态转移方程: 对于 i 位置的元素 arr[i] ,有下面两种情况:

  • arr[i] > arr[i - 1] :如果 i 位置的元素比 i - 1 位置的元素大,说明接下来 应该去找 i -1 位置结尾,并且 i - 1 位置元素比前⼀个元素小的序列,那就是 g[i - 1] 。更新 f[i] 位置的值: f[i] = g[i - 1] + 1 ;
  • arr[i] < arr[i - 1] :如果 i 位置的元素比 i - 1 位置的元素小,说明接下来 应该去找 i - 1 位置结尾,并且 i - 1 位置元素比前⼀个元素大的序列,那就是 f[i - 1] 。更新 g[i] 位置的值: g[i] = f[i - 1] + 1;
  • arr[i] == arr[i - 1] :不构成湍流数组。

        初始化: 所有的元素单独都能构成一个湍流数组,因此可以将 dp 表内所有元素初始化为 1。 由于用到前面的状态,因此循环的时候从第二个位置开始。

从左往右,两个表一起填,最后返回两个dp表中的最大值即可。

class Solution {
public:int maxTurbulenceSize(vector<int>& arr) {int n = arr.size(), ret = 1;vector<int> f(n, 1), g(n, 1);// 以i位置元素为结尾的所有子数组中,呈现上升/下降状态下的最⻓湍流数组的⻓度for(int i = 1; i < n; ++i){if(arr[i-1] > arr[i]) // 下降的{g[i] = f[i-1] + 1; }else if(arr[i-1] < arr[i]) // 上升的{f[i] = g[i-1] + 1; }ret = max(ret, max(f[i], g[i]));}return ret;}
};

相关文章:

每日OJ题_子数组子串dp⑥_力扣978. 最长湍流子数组

目录 力扣978. 最长湍流子数组 解析代码 力扣978. 最长湍流子数组 978. 最长湍流子数组 难度 中等 给定一个整数数组 arr &#xff0c;返回 arr 的 最大湍流子数组的长度 。 如果比较符号在子数组中的每个相邻元素对之间翻转&#xff0c;则该子数组是 湍流子数组 。 更正…...

蓝桥练习题总结(一)字母图形、完美的代价、01串、序列求和

目录 一、字母图形 二、完美的代价 三、01字串 四、序列求和 一、字母图形 问题描述 利用字母可以组成一些美丽的图形&#xff0c;下面给出了一个例子&#xff1a; ABCDEFG BABCDEF CBABCDE DCBABCD EDCBABC 这是一个5行7列的图形&#xff0c;请找出这个图形的规律&#xff…...

Android 静默安装二(无障碍服务版)

近期开发上线一个常驻app&#xff0c;项目已上线&#xff0c;今天随笔记录一下静默安装相关内容。我分三篇静默安装&#xff08;root版&#xff09;、静默安装&#xff08;无障碍版&#xff09;、监听系统更新、卸载、安装。 先说说我的项目需求&#xff1a;要求app一直运行&am…...

蓝桥杯 EDA 组 2023模拟+真题原理图解析

本文解析了标题内的原理图蓝桥杯EDA组真题&#xff0c;2021-2022 省赛真题/模拟题在上一篇文中。本文中重复或者是简单的电路节约篇幅不在赘述。 其中需要补充和计算原理图的题目解析都放在最下面 一、2023 年第十四届省赛模拟题1 1.1 Type-C 接口电路 通过 CH340N 将数据转化为…...

聊聊功率器件(氮化镓,碳化硅)

氮化镓和碳化硅是两种具有独特性质和广泛应用的无机物。下面将尽可能详细地解释它们的定义、应用、研究热点以及对我们的价值。 1&#xff0c;氮化镓 氮化镓&#xff08;GaN&#xff09;是一种由氮和镓元素组成的化合物&#xff0c;具有直接能隙的半导体特性。其结构类似于纤…...

计算地球圆盘负荷产生的位移

1.研究背景 计算受表面载荷影响的弹性体变形问题有着悠久的历史&#xff0c;涉及到许多著名的数学家和物理学家&#xff08;Boussinesq 1885&#xff1b;Lamb 1901&#xff1b;Love 1911&#xff0c;1929&#xff1b;Shida 1912&#xff1b;Terazawa 1916&#xff1b;Munk &…...

Harbor介绍

1.什么是Harbor Harbor是一个开源的企业级Docker Registry管理项目&#xff0c;由VMware公司开源。 Harbor提供了比Docker官方公共镜像仓库更为丰富和安全的功能&#xff0c;尤其适合企业环境使用。以下是Harbor的一些关键特性&#xff1a; 权限管理&#xff08;RBAC&#x…...

解决jenkins运行磁盘满的问题

参考&#xff1a;https://blog.csdn.net/ouyang_peng/article/details/79225993 分配磁盘空间相关操作&#xff1a; https://cloud.tencent.com/developer/article/2230624 登录jenkins相对应的服务或容器中查看磁盘情况&#xff1a; df -h在102挂载服务器上看到是这两个文件…...

使用echart绘制拓扑图,树类型,自定义tooltip和label样式,可收缩

效果如图&#xff1a; 鼠标移上显示 vue3 - ts文件 “echarts”: “^5.4.3”, import { EChartsOption } from echarts import * as echarts from echarts/core import { TooltipComponent } from echarts/components import { TreeChart } from echarts/charts import { C…...

常用的6个的ChatGPT网站,国内可用!

GPTGod &#x1f310; 链接&#xff1a; GPTGod &#x1f3f7;️ 标签&#xff1a; GPT-4 免费体验 支持API 支持绘图 付费选项 &#x1f4dd; 简介&#xff1a;GPTGod 是一个功能全面的平台&#xff0c;提供GPT-4的强大功能&#xff0c;包括API接入和绘图支持。用户可以选择免…...

Linux课程____Samba文件共享服务

一、 Samba服务基础 SMB协议&#xff0c;服务消息块 CIFS协议&#xff0c;通用互联网文件系统 1.Samba 服务器的主要程序 smbd:提供对服务器中文件、打印资源的共享访问 nmbd:提供基于 NetBlOS 主机名称的解析 2.目录文件 /etc/samba/smb.conf 检查工具&#xff1a;test…...

Java学习day1

打开命令提示符&#xff08;cmd&#xff09;窗口&#xff1a; 按下winR键&#xff0c;输入cmd 按回车或点击确定&#xff0c;打开cmd窗口 常用cmd命令 盘符名称冒号&#xff08;D:)&#xff1a;盘符切换&#xff0c;示例表示由C盘切换到D盘 dir&#xff1a;查看当前路径下的内…...

ByteTrack多目标跟踪——YOLOX详解

文章目录 1 before train1.1 dataset1.2 model 2 train2.1 Backbone2.2 PAFPN2.3 Head2.3.1 Decoupled Head2.3.2 anchor-free2.3.3 标签分配① 初步筛选② simOTA 2.3.4 Loss计算 项目地址&#xff1a; ByteTrack ByteTrack使用的检测器是YOLOX&#xff0c;是一个目前非常流行…...

Linux 常见驱动框架

一、V4L2驱动框架 v4l2驱动框架主要对象&#xff1a; &#xff08;1&#xff09;video_device&#xff1a;一个字符设备&#xff0c;为用户空间提供设备节点(/dev/videox)&#xff0c;提供系统调用的相关操作(open、ioctl…) &#xff08;2&#xff09;v4l2_device&#xff1a…...

Oracle函数6—递归查询(start with...connect by、sys_connect_by_path、level)

文章目录 一、准备数据二、基本使用三、level函数四、获取完整的全树路径 一、准备数据 创建表 CREATE TABLE TEST_ORG (ID VARCHAR2(64) NOT NULL PRIMARY KEY,NAME VARCHAR2(200),PARTEN_ID VARCHAR2(64) ); comment on column TEST_ORG.ID is 主键; comment on column TES…...

人机交互三原则,网络7层和对应的设备、公钥私钥

人机交互三原则 heo Mandel提出了人机交互的三个黄金原则&#xff0c;它们强调了相似的设计目标&#xff0c;分别是&#xff1a; 简单总结为&#xff1a;控负持面–>空腹吃面 1&#xff0c;用户控制 2&#xff0c;减轻负担 3&#xff0c;保持界面一致 置用户于控制之下&a…...

vue2源码学习01配置rollup打包环境

1.下载rollup相关依赖 npm i rollup rollup-plugin-babel babel/core babel/preset-env --save-dev 2.新建rollup.config.js配置打包选项 //rollup可以导出一个对象&#xff0c;作为打包的配置文件 import babel from rollup-plugin-babel export default {input: ./src/ind…...

DP:斐波那契数列模型

创作不易&#xff0c;感谢三连支持 &#xff01; 斐波那契数列用于一维探索的单峰函数之中&#xff0c;用于求解最优值的方法。其主要优势为&#xff0c;在第一次迭代的时候求解两个函数值&#xff0c;之后每次迭代只需求解一次 。 一、第N个泰波那契数 . - 力扣&#xff08;…...

JavaScript高级(十四)----prmise

异步请求的处理方式 回调函数 所谓的回调函数就是函数作为参数的传递&#xff0c;在一个函数内部调用另一个函数&#xff0c;调用的同时可以把内部函数的数据传递出来&#xff0c;他的使用场景就是异步操作&#xff0c;数据需要等待一段时间才能返回的情况下可以使用回调函数…...

28 OpenCV 轮廓周围绘制图形

文章目录 approxPolyDP 轮廓周围绘制矩形boundingRectminAreaRect绘制圆和椭圆示例 approxPolyDP 轮廓周围绘制矩形 approxPolyDP(InputArray curve, OutputArray approxCurve, double epsilon, bool closed)curve&#xff1a;输入点集&#xff0c;二维点向量的集合appro…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

RocketMQ延迟消息机制

两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数&#xff0c;对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后&#xf…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计&#xff0c;聪明的码友立马就知道了&#xff0c;该到数据访问模块了&#xff0c;要不就这俩玩个6啊&#xff0c;查库势在必行&#xff0c;至此&#xff0c;它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据&#xff08;数据库、No…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

springboot 日志类切面,接口成功记录日志,失败不记录

springboot 日志类切面&#xff0c;接口成功记录日志&#xff0c;失败不记录 自定义一个注解方法 import java.lang.annotation.ElementType; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.annotation.Target;/***…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者&#xff0c;高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法&#xff0c;分为两大系列&#xff1a; 一、getElementBy... 系列 传统方法&#xff0c;直接通过 DOM 接口访问&#xff0c;返回动态集合&#xff08;元素变化会实时更新&#xff09;。…...

react菜单,动态绑定点击事件,菜单分离出去单独的js文件,Ant框架

1、菜单文件treeTop.js // 顶部菜单 import { AppstoreOutlined, SettingOutlined } from ant-design/icons; // 定义菜单项数据 const treeTop [{label: Docker管理,key: 1,icon: <AppstoreOutlined />,url:"/docker/index"},{label: 权限管理,key: 2,icon:…...