当前位置: 首页 > news >正文

语义分割实战项目(从原理到代码环境配置)

语义分割(Semantic Segmentation)
先看结果:

是计算机视觉和深度学习领域的一项核心任务,它主要致力于对图像中的每一个像素进行分类,赋予每个像素一个类别标签,以达到理解图像内容的目的。换句话说,语义分割就是将图像分割成多个区域,使得同一区域内所有像素属于同一类别(例如,天空、道路、行人、车辆等)。

在实际应用中,语义分割技术有着广泛用途,例如自动驾驶汽车需要精确区分路面、行人、交通标志等元素,医学影像分析中也需要对组织器官进行精准分割,以及无人机航拍图像的场景解析等。

总的来说,语义分割是一个既要求模型具有全局上下文理解能力,又要求具备局部细节分辨能力的技术,是推动图像理解和智能系统发展的重要一环。

主要特性

  • 统一的基准平台

    我们将各种各样的语义分割算法集成到了一个统一的工具箱,进行基准测试。

  • 模块化设计

    MMSegmentation 将分割框架解耦成不同的模块组件,通过组合不同的模块组件,用户可以便捷地构建自定义的分割模型。

  • 丰富的即插即用的算法和模型

    MMSegmentation 支持了众多主流的和最新的检测算法,例如 PSPNet,DeepLabV3,PSANet,DeepLabV3+ 等.

  • 速度快

    训练速度比其他语义分割代码库更快或者相当。

开始:安装和运行 MMSeg

需要安装 Python 3.7+, CUDA 10.2+ 和 PyTorch 1.8+

步骤 1. 创建一个 conda 环境,并激活

conda create --name openmmlab python=3.8 -y
conda activate openmmlab

步骤 2.

 在 GPU 平台上:

conda install pytorch torchvision -c pytorch

在 CPU 平台上:

conda install pytorch torchvision cpuonly -c pytorch

安装

最佳实践

步骤 0. ​ 使用 MIM 安装 MMCV

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0"

步骤 1. 安装 MMSegmentation

情况 a: 如果您想立刻开发和运行 mmsegmentation,您可通过源码安装:


cd mmsegmentation
pip install -v -e .
# '-v' 表示详细模式,更多的输出
# '-e' 表示以可编辑模式安装工程,
# 因此对代码所做的任何修改都生效,无需重新安装

情况 b: 如果您把 mmsegmentation 作为依赖库或者第三方库,可以通过 pip 安装:

pip install "mmsegmentation>=1.0.0"

验证是否安装成功

为了验证 MMSegmentation 是否正确安装,我们提供了一些示例代码来运行一个推理 demo 。

步骤 1. 下载配置文件和模型文件

mim download mmsegmentation --config pspnet_r50-d8_4xb2-40k_cityscapes-512x1024 --dest .

步骤 2. 验证推理 demo

选项 (a). 如果您通过源码安装了 mmsegmentation,运行以下命令即可:

python demo/image_demo.py demo/demo.png configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth --device cuda:0 --out-file result.jpg

您将在当前文件夹中看到一个新图像 ,其中所有目标都覆盖了分割 maskresult.jpg

选项 (b). 如果您通过 pip 安装 mmsegmentation, 打开您的 python 解释器,复制粘贴以下代码:

from mmseg.apis import inference_model, init_model, show_result_pyplot
import mmcvconfig_file = 'pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py'
checkpoint_file = 'pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'# 根据配置文件和模型文件建立模型
model = init_model(config_file, checkpoint_file, device='cuda:0')# 在单张图像上测试并可视化
img = 'demo/demo.png'  # or img = mmcv.imread(img), 这样仅需下载一次
result = inference_model(model, img)
# 在新的窗口可视化结果
show_result_pyplot(model, img, result, show=True)
# 或者将可视化结果保存到图像文件夹中
# 您可以修改分割 map 的透明度 (0, 1].
show_result_pyplot(model, img, result, show=True, out_file='result.jpg', opacity=0.5)
# 在一段视频上测试并可视化分割结果
video = mmcv.VideoReader('video.mp4')
for frame in video:result = inference_model(model, frame)show_result_pyplot(model, frame, result, wait_time=1)

可以修改上面的代码来测试单个图像或视频,这两个选项都可以验证安装是否成功。

 

#代码获取#企鹅Q耗子:767172261

 

相关文章:

语义分割实战项目(从原理到代码环境配置)

语义分割(Semantic Segmentation) 先看结果: 是计算机视觉和深度学习领域的一项核心任务,它主要致力于对图像中的每一个像素进行分类,赋予每个像素一个类别标签,以达到理解图像内容的目的。换句话说&#…...

基于python+vue 的一加剧场管理系统的设计与实现flask-django-nodejs-php

二十一世纪我们的社会进入了信息时代,信息管理系统的建立,大大提高了人们信息化水平。传统的管理方式对时间、地点的限制太多,而在线管理系统刚好能满足这些需求,在线管理系统突破了传统管理方式的局限性。于是本文针对这一需求设…...

【Entity Framework】 EF中DbContext类详解

【Entity Framework】 EF中DbContext类详解 一、概述 DbContext类是实体框架的重要组成部分。它是应用域或实例类与数据库交互的桥梁。 从上图可以看出DbContext是负责与数据交互作为对象的主要类。DbContext负责以下活动: EntitySet:DbContext包含…...

智能风扇的新篇章:唯创知音WTK6900G语音识别芯片引领行业革新

随着科技浪潮的推进,智能化技术逐渐渗透到生活的每一个角落,家电领域尤为明显。风扇,这一夏日清凉神器,也通过智能化改造,焕发出前所未有的光彩。其中,智能语音控制功能的加入,为风扇的使用带来…...

[json.exception.type_error.316] invalid UTF-8 byte报错

[json.exception.type_error.316] invalid UTF-8 byte at index 1: 解决方法重新编译程序即可。...

深度强化学习(九)(改进策略梯度)

深度强化学习(九)(改进策略梯度) 一.带基线的策略梯度方法 Theorem: 设 b b b 是任意的函数, b b b与 A A A无关。把 b b b 作为动作价值函数 Q π ( S , A ) Q_\pi(S, A) Qπ​(S,A) 的基线, 对策略梯度没有影响: ∇ θ J …...

Oracle修改Number类型精度报错:ORA-01440

修改Number类型的字段的精度SQL ALTER TABLE XXXX MODIFY RATE NUMBER(30,6); 如果表已经存在数据,报错信息如下: ORA-01440: column to be modified must be empty to decrease precision or scale 废话不多说,解决方案如下:…...

美团到店-后端开发一面

1. 介绍一下spring的两大核心思想 2. 介绍一下java的代理,以及动态代理和静态代理的区别 3. spring动态代理是如何生成的,jdk动态代理和cglib的区别 4. 介绍一下synchronized关键字、以及synchronized锁和lock的区别 5. 讲一下java中synchronized的锁升级…...

面试算法-77-括号生成

题目 数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。 示例 1: 输入:n 3 输出:[“((()))”,“(()())”,“(())()”,“()(())”,“()()()”] 解 class Solution {publ…...

webpack5零基础入门-12搭建开发服务器

1.目的 每次写完代码都需要手动输入指令才能编译代码,太麻烦了,我们希望一切自动化 2.安装相关包 npm install --save-dev webpack-dev-server 3.添加配置 在webpack.config.js中添加devServer相关配置 /**开发服务器 */devServer: {host: localhos…...

opengl日记10-opengl使用多个纹理示例

文章目录 环境代码CMakeLists.txt文件内容不变。fragmentShaderSource.fsvertexShaderSource.vsmain.cpp 总结 环境 系统:ubuntu20.04opengl版本:4.6glfw版本:3.3glad版本:4.6cmake版本:3.16.3gcc版本:10.…...

锂电池寿命预测 | Matlab基于ALO-SVR蚁狮优化支持向量回归的锂离子电池剩余寿命预测

目录 预测效果基本介绍程序设计参考资料 预测效果 基本介绍 锂电池寿命预测 | Matlab基于ALO-SVR蚁狮优化支持向量回归的锂离子电池剩余寿命预测 基于蚁狮优化和支持向量回归的锂离子电池剩余寿命预测: 1、提取NASA数据集的电池容量,以历史容量作为输入,…...

动态规划15 | ● 392.判断子序列 ● *115.不同的子序列

392.判断子序列 https://programmercarl.com/0392.%E5%88%A4%E6%96%AD%E5%AD%90%E5%BA%8F%E5%88%97.html 考点 子序列问题 我的思路 dp[i][j]的含义是,两个序列分别取到下标为i和j的时候,他们是否满足前者是后者的子序列,满足为True&#x…...

APP UI自动化测试思路总结

首先想要说明一下,APP自动化测试可能很多公司不用,但也是大部分自动化测试工程师、高级测试工程师岗位招聘信息上要求的,所以为了更好的待遇,我们还是需要花时间去掌握的,毕竟谁也不会跟钱过不去。 接下来&#xff0c…...

Codeforces Round 936 (Div. 2)

C. Tree Cutting 题意&#xff1a;给定一棵树&#xff0c;需要删除 k 条边&#xff0c;使得 k1 个联通块中的最小结点数最大。求出这个最大值 思路&#xff1a;求最小值最大--想到二分答案--然后深搜满足条件的连通块是否大于k即可 #include<iostream> #include<al…...

yolov6实现遥感影像目标识别|以DIOR数据集为例

1 目标检测是计算机视觉领域中的一项重要任务&#xff0c;它的目标是在图像或视频中检测出物体的位置和类别。YOLO&#xff08;You Only Look Once&#xff09;是一系列经典的目标检测算法&#xff0c;最初由Joseph Redmon等人于2016年提出。YOLO算法具有快速、简单、端到端的特…...

stable-diffusion-electron-clickstart 支持windows AMD显卡

前言 使用vue3 vite electron element-plus构建&#xff0c;正好学习下electrongithub stable-diffusion “画境导航者” 启动器 简介 stable-diffusion “画境导航者” 启动器支持功能 一键启动打开文件夹&#xff08;tmp、txt2img-images&#xff09;等模型所在文件夹&…...

ES进程除了kill之外,有什么优雅关闭的方式吗?

问题 Linux环境中&#xff0c;Elasticsearch 8的进程除了kill之外&#xff0c;有什么优雅关闭的方式吗&#xff1f; 具体实施方式 在Linux环境中&#xff0c;Elasticsearch&#xff08;ES&#xff09;进程可以通过多种方式实现优雅关闭&#xff0c;这种方式允许它完成必要的…...

院子摄像头的监控

院子摄像头的监控和禁止区域入侵检测相比&#xff0c;多了2个功能&#xff1a;1&#xff09;如果检测到有人入侵&#xff0c;则把截图保存起来&#xff0c;2&#xff09;如果检测到有人入侵&#xff0c;则向数据库插入一条事件数据。 打开checkingfence.py&#xff0c;添加如下…...

SpringBoot3使用响应Result类返回的响应状态码为406

Resolved [org.springframework.web.HttpMediaTypeNotAcceptableException: No acceptable representation] 解决方法&#xff1a;Result类上加上Data注解...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业&#xff0c;项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升&#xff0c;传统的管理模式已经难以满足现代工程的需求。过去&#xff0c;许多企业依赖手工记录、口头沟通和分散的信息管理&#xff0c;导致效率低下、成本失控、风险频发。例如&#…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

Linux 内存管理实战精讲:核心原理与面试常考点全解析

Linux 内存管理实战精讲&#xff1a;核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用&#xff0c;还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...