当前位置: 首页 > news >正文

基于YOLOv8深度学习的橙子病害智能诊断与防治系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分类

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~

《------正文------》

基本功能演示

在这里插入图片描述

摘要:橙子作为全球消费量巨大的水果之一,其产量和质量对农业产业链有着显著的影响。橙子病害智能诊断与防治系统可以帮助农民快速准确地识别病害,实时提出有效的防治方法,从而节省成本、提高产量和果品质量,对稳定农业生产拥有重要的意义。本文基于YOLOv8深度学习框架,通过1790张图片,训练了一个橙子病害的识别模型,可用于识别4种不同的橙子病害类型。并基于此模型开发了一款带UI界面的橙子病害智能诊断与防治系统,可快速、准确地识别实时识别场景中的橙子病害类型,同时提供科学的防治建议,这有助于农户及时采取措施,有效控制病害扩散,显著提升农业生产的效率和可持续性。该系统是基于pythonPyQT5开发的,支持图片批量图片视频以及摄像头进行识别检测。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 2. 数据集准备与训练
    • 3.模型训练
    • 4. 训练结果评估
    • 5. 利用模型进行推理
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

橙子作为全球消费量巨大的水果之一,其产量和质量对农业产业链有着显著的影响。橙子病害的出现不仅能降低橙子的产量和市场价值,还可能导致整个收成的损失。因此,橙子病害智能诊断与防治系统显得尤为重要,它可以帮助农民快速准确地识别病害,实时提出有效的防治方法,从而节省成本、提高产量和果品质量,对稳定农业生产拥有重要的意义

橙子病害智能诊断与防治系统的应用场景包括
水果种植园管理:作为果园日常监控的工具,帮助农民及时发现和处理橙树的病害问题。
农业质量控制:在收获和分级阶段检测橙子病害,确保只有健康无病虫害的水果流入市场。
农业扩展服务:辅助农业推广机构提供疾病识别和防治技术培训给农户。
智能农业设备:集成至智能喷药机或无人机,实现精准防治,减少药剂使用并降低对环境的影响。
农业科研:为农业科研人员提供大量实时数据,支持病害发生规律和控制策略研究。

总结来说,橙子病害智能诊断与防治系统具有重要的应用价值和社会意义,它能够辅助农民和农业专业人员提高病害管理水平,保证水果产量和品质,促进农业的可持续发展。通过使用最新的YOLOv8图像识别技术,系统不仅提高了病害识别的准确性,还有助于优化农药的使用,减少环境污染。随着人工智能技术在农业领域的不断应用和发展,此类智能系统将会在保障食品安全和推动农业现代化进程中扮演越来越重要的角色。

博主通过搜集橙子病害的相关数据图片并整理,根据YOLOv8的深度学习技术训练识别模型,并基于python与Pyqt5开发了一款界面简洁的橙子病害智能诊断与防治系统,可支持图片、批量图片、视频以及摄像头检测

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行4种不同橙子病害的类型识别,分别为:['黑斑病','溃疡病','健康','绿化病'];
2.可针对不同病害类型给出对应的防治方法与建议【可自己添加具体描述,字数不限】;
3. 支持图片、批量图片、视频以及摄像头检测
4. 界面可实时显示识别结果置信度用时等信息;

(1)图片检测演示

单个图片检测操作如下:
点击打开图片按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:
在这里插入图片描述

批量图片检测操作如下:
点击打开文件夹按钮,选择需要检测的文件夹【注意是选择文件夹】,可进行批量图片检测,表格中会有所有图片的检测结果信息,点击表格中的指定行,会显示指定行图片的检测结果双击路径单元格,会看到图片的完整路径。操作演示如下:
在这里插入图片描述

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。
在这里插入图片描述

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的深度学习技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
YOLO各版本性能对比:
在这里插入图片描述
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

本文使用的橙子病害数据集共包含1790张图片,分为4个病害类别,分别是['黑斑病','溃疡病','健康','绿化病']。部分数据集及类别信息如下:
在这里插入图片描述

在这里插入图片描述

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入Data目录下。
在这里插入图片描述

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')if __name__ == '__main__':# 训练模型配置文件路径yolo_yaml_path = 'ultralytics/cfg/models/v8/yolov8-cls.yaml'# 官方预训练模型路径pre_model_path = "yolov8n-cls.pt"# 加载预训练模型model = YOLO(yolo_yaml_path).load(pre_model_path)# 模型训练model.train(data='datasets/Data', epochs=150, batch=4)

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

本文训练结果如下:
通过accuracy_top1图片准确率曲线图我们可以发现,该模型在验证集的准确率约为0.99,结果还是很不错的。
在这里插入图片描述

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
在这里插入图片描述

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/cancro_teste (14).jpg"# 加载模型
model = YOLO(path, task='classify')# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款橙子病害智能诊断与防治系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,发送【源码】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境,【包含环境配置说明文档和一键环境配置脚本文件】。

关注下方名片GZH:【阿旭算法与机器学习】,发送【源码】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的橙子病害智能诊断与防治系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

相关文章:

基于YOLOv8深度学习的橙子病害智能诊断与防治系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分类

《博主简介》 小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~ 👍感谢小伙伴们点赞、关注! 《------往期经典推…...

Java中的多线程详解(超级简单理解)(上篇)

使用工具 IntelliJ IDEA Community Edition 2023.1.4 使用语言 Java8 代码能力快速提升小方法,看完代码自己敲一遍,十分有用 目录 1.多线程概述 1.1 进程与线程 1.2 多线程的运行机制 1.3 多线程的优势 2.多线程编程 2.1 Thread类介绍 2.2 …...

Elastic-Job 分布式任务调度

一、使用场景 (1)分布式项目中 定时任务。如果只部署一台机器,可用性无法保证,如果定时任务机器宕机,无法故障转移,如果部署多台机器时,同一个任务会执行多次,任务重复执行也会出问…...

YZ系列工具之YZ09: VBA_Excel之读心术

我给VBA下的定义:VBA是个人小型自动化处理的有效工具。利用好了,可以大大提高自己的工作效率,而且可以提高数据的准确度。我的教程一共九套一部VBA手册,教程分为初级、中级、高级三大部分。是对VBA的系统讲解,从简单的…...

Python下载音乐

今天我就来分享一下我的方法:Python爬虫 在CS dn社区中我浏览了许多关于爬虫代码,可都有各自的缺陷,有的需要ID比较麻烦,这里我编写了一个程序,他只需要输入歌曲名字即可进行搜索爬取并下载 话不多说,下面的程序复制…...

PCL ICP配准高阶用法——统计每次迭代的配准误差并可视化

目录 一、概述二、代码实现三、可视化代码四、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、概述 在进行论文写作时,需要做对比实验,来分析改进算法的性能,期间用到了迭代误差分布统计的比较分析,为直…...

电脑卸载软件怎么清理干净?电脑清理的5种方法

随着我们在电脑上安装和卸载各种软件,很多时候我们会发现,即使软件被卸载,其残留的文件和注册表项仍然存在于电脑中,这不仅占用了宝贵的磁盘空间,还可能影响电脑的性能。那么,如何确保在卸载软件时能够彻底…...

LLM流式方案解决方案和客户端解决方案

背景 接上一篇《LLM大模型统一封装接口解决方案》架构确定后,流式方案非常规请求,需要特殊处理。 本解决方案就是针对上一篇中所需要的流式(打字机效果进行编码) 什么是SSE SSE(Server-Sent Events,服务器发…...

ROS2 高效学习系列

ROS2 高效学习系列 1 说明2 正文 1 说明 2023 年,我们总结输出了 ROS高效入门系列 和 ROS高效进阶系列,系统学习了 ros1 基础知识和 ros 的机器人算法。由于 ros2 的普及,我们将系统学习 ros2 ,包括 ros2 基础知识和相关高级组件…...

SpringBoot + MyBatisPlus分页查询

文章目录 1.思路分析2.分页查询后端实现1.com/sun/furn/config/MybatisConfig.java 注入MyBatisPlus分页拦截器2.com/sun/furn/controller/FurnController.java 添加方法3.postman测试 3.分页查询前端实现1.src/views/HomeView.vue 引入分页导航条组件2.src/views/HomeView.vue…...

记使用sjson的一次小事故

1. 前言 之前在设计一个兼容函数的时候,使用了sjson动态设入参数,从而实现一些参数的兼容。大致的逻辑如下所示: // 有一堆不规则的json数据 {"a":"aaa","b":"bbb","any_key1":{"k…...

如何在iOS系统抓取log

前言:因为作者目前工作领域和苹果智能家居有关,然后发现一些bug其实是apple sdk原生code的问题,所以需要给apple提radar单,就需要抓ios端Log充当证据给apple看,其实ios抓log非常简单,大家感兴趣可以学习下哦…...

【嵌入式——QT】Charts常见的图表的绘制

【嵌入式——QT】Charts常见的图表的绘制 柱状图QBarSetQBarSeriesQBarCategoryAxis图示 饼图堆叠柱状图百分比柱状图散点图和光滑曲线图代码示例 柱状图 QBarSet 用于创建柱状图的数据集。 主要函数 setLabel():设置数据集标签 ;setLabelBrush()&am…...

pandas读写excel,csv

1.读excel 1.to_dict() 函数基本语法 DataFrame.to_dict (self, orientdict , into ) --- 官方文档 函数种只需要填写一个参数:orient 即可 ,但对于写入orient的不同,字典的构造方式也不同,官网一共给出了6种&#xff0c…...

清华大学突破性研究:GVGEN技术,7秒内从文字到3D高保真生成

引言:3D模型生成的挑战与机遇 随着计算机图形学的发展,3D模型的生成在各个行业中变得越来越重要,包括视频游戏设计、电影制作以及AR/VR技术等。在3D建模的不同方面中,从文本描述生成3D模型成为一个特别有趣的研究领域,…...

软件测试要学习的基础知识——黑盒测试

概述 黑盒测试也叫功能测试,通过测试来检测每个功能是否都能正常使用。在测试中,把程序看作是一个不能打开的黑盒子,在完全不考虑程序内部结构和内部特性的情况下,对程序接口进行测试,只检查程序功能是否按照需求规格…...

如何用Airtest脚本连接无线Android设备?

之前我们已经详细介绍过如何用AirtestIDE无线连接Android设备,它的关键点在于,需要先 adb connect 一次,才能点击 connect 按钮无线连接上该设备: 但是有很多同学,在使用纯Airtest脚本的形式连接无线设备时&#xff0c…...

c语言函数大全(C开头)

c语言函数大全(C开头) There is no nutrition in the blog content. After reading it, you will not only suffer from malnutrition, but also impotence. The blog content is all parallel goods. Those who are worried about being cheated should leave quickly. 函数名…...

初始Redis关联和非关联

基础篇Redis 3.初始Redis 3.1.2.关联和非关联 传统数据库的表与表之间往往存在关联,例如外键: 而非关系型数据库不存在关联关系,要维护关系要么靠代码中的业务逻辑,要么靠数据之间的耦合: {id: 1,name: "张三…...

Redis 更新开源许可证 - 不再支持云供应商提供商业化的 Redis

原文:Rowan Trollope - 2024.03.20 未来的 Redis 版本将继续在 RSALv2 和 SSPLv1 双许可证下提供源代码的免费和宽松使用;这些版本将整合先前仅在 Redis Stack 中可用的高级数据类型和处理引擎。 从今天开始,所有未来的 Redis 版本都将以开…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

Spring数据访问模块设计

前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...

企业如何增强终端安全?

在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...