【智能算法】海马优化算法(SHO)原理及实现

目录
- 1.背景
- 2.算法原理
- 2.1算法思想
- 2.2算法过程
- 3.结果展示
- 4.参考文献
1.背景
2022年,Zhao等人受到海马自然社会行为启发,提出了海马优化算法(Sea-horse Optimizer, SHO)。
2.算法原理
2.1算法思想
SHO模拟了海马群在自然界中的运动、捕食和繁殖行为。
2.2算法过程
海马探索阶段主要负责全局探索,海马个体通过正态分布 r1 选择运动模式(莱维飞行,布朗随机游走)进行位置更新,表述为:
X n e w 1 ( t + 1 ) = { X i ( t ) + L e v y ( λ ) ( ( X e l i t e ( t ) − X i ( t ) ) × x × y × z + X e l i t e ) r 1 > 0 X i ( t ) + r a n d ∗ l ∗ β t ∗ ( X i ( t ) − β t ∗ X e l i t e ) r 1 ≤ 0 (1) \left.X_{new}^{1}(t+1)=\left\{\begin{array}{ll}X_{i}(t)+Levy(\lambda)((X_{elite}\left(t\right)-X_{i}\left(t\right))\times x\times y\times z+X_{elite})&r_{1}>0\\\\X_{i}\left(t\right)+rand^{*}l^{*}\beta_{t}{}^{*}\left(X_{i}\left(t\right)-\beta_{t}{}^{*}X_{elite}\right)&r_{1}\leq0\end{array}\right.\right.\tag{1} Xnew1(t+1)=⎩ ⎨ ⎧Xi(t)+Levy(λ)((Xelite(t)−Xi(t))×x×y×z+Xelite)Xi(t)+rand∗l∗βt∗(Xi(t)−βt∗Xelite)r1>0r1≤0(1)
海马捕食阶段主要根据探索阶段选出的最优个体进行局部探索。该阶段采用捕食成功概率来选择不同运动模式,其中捕食成功概率超过 90%。
X n e w 2 ( t + 1 ) = { α ∗ ( X e l i t e − r a n d ∗ X n e w 1 ( t ) ) + ( 1 − α ) ∗ X e l i t e i f r 2 > 0.1 ( 1 − α ) ∗ ( X n e w 1 ( t ) − r a n d ∗ X e l i t e ) + α ∗ X n e w 1 ( t ) i f r 2 ≤ 0.1 (2) X_{new}^2\left(t+1\right)=\begin{cases}\alpha^*\left(X_{elite}-rand^*X_{new}^1\left(t\right)\right)+(1-\alpha)^*X_{elite}&ifr_2>0.1\\\\(1-\alpha)^*\left(X_{new}^1\left(t\right)-rand^*X_{elite}\right)+\alpha^*X_{new}^1\left(t\right)&ifr_2\leq0.1\end{cases}\tag{2} Xnew2(t+1)=⎩ ⎨ ⎧α∗(Xelite−rand∗Xnew1(t))+(1−α)∗Xelite(1−α)∗(Xnew1(t)−rand∗Xelite)+α∗Xnew1(t)ifr2>0.1ifr2≤0.1(2)
海马移动步长a表述为:
α = ( 1 − t T ) 2 t T (3) \alpha=\left(1-\frac tT\right)^{\frac{2t}T}\tag{3} α=(1−Tt)T2t(3)
海马群繁殖阶段主要进行局部寻优。在该阶段,海马子代会随机继承探索和捕食阶段父母双方的基因,以寻找最优个体。具体位置更新公式为:
X i o f f s p r i n g = r 3 X i f a t h e r + ( 1 − r 3 ) X i m o t h e r (4) X_i^{offspring}=r_3X_i^{father}+(1-r_3)X_i^{mother}\tag{4} Xioffspring=r3Xifather+(1−r3)Ximother(4)
伪代码:

3.结果展示

4.参考文献
[1] Zhao S, Zhang T, Ma S, et al. Sea-horse optimizer: A novel nature-inspired meta-heuristic for global optimization problems[J]. Applied Intelligence, 2023, 53(10): 11833-11860.
相关文章:
【智能算法】海马优化算法(SHO)原理及实现
目录 1.背景2.算法原理2.1算法思想2.2算法过程 3.结果展示4.参考文献 1.背景 2022年,Zhao等人受到海马自然社会行为启发,提出了海马优化算法(Sea-horse Optimizer, SHO)。 2.算法原理 2.1算法思想 SHO模拟了海马群在自然界中的…...
AI大模型学习的伦理与社会影响
AI大模型学习 随着人工智能技术的快速发展,AI大模型学习成为当前热门研究领域之一。AI大模型学习是指基于大规模数据集和深度学习模型进行训练,以实现更高的准确性和复杂性。这些大模型已经在几乎所有领域都取得了显著的成就,包括自然语言处…...
记录些LangChain相关的知识
RAG的输出准确率 RAG的输出准确率 向量信息保留率 * 语义搜索准确率 * LLM准确率RAG的输出准确率由三个因素共同决定:向量信息保留率、语义搜索准确率以及LLM准确率。这三个因素是依次作用的,因此准确率实际上是它们的乘积。这意味着,任何一…...
C语言例4-7:格式字符f的使用例子
%f,实型,小数部分为6位 代码如下: //格式字符f的使用例子 #include<stdio.h> int main(void) {float f 123.456;double d1, d2;d11111111111111.111111111;d22222222222222.222222222;printf("%f,%12f,%12.2f,%-12.2f,%.2f\n&qu…...
[蓝桥杯 2019 省 A] 修改数组
题目链接 [蓝桥杯 2019 省 A] 修改数组 题目描述 给定一个长度为 N N N 的数组 A [ A 1 , A 2 , A 3 , . . . , A N ] A [A_1, A_2, A_3, ...,A_N] A[A1,A2,A3,...,AN],数组中有可能有重复出现的整数。 现在小明要按以下方法将其修改为没有重复整数的…...
Git基础(25):Cherry Pick合并指定commit id的提交
文章目录 前言指定commit id合并使用TortoiseGit执行cherry-pick命令 前言 开发中,我们会存在多个分支开发的情况,比如dev,test, prod分支,dev分支在开发新功能,prod作为生产分支已发布。如果某个时候,我们…...
C语言结构体之位段
位段(节约内存),和王者段位联想记忆 位段是为了节约内存的。刚好和结构体相反。 那么什么是位段呢?我们现引入情景:我么如果要记录一个人是男是女,用数字0 1表示。我们发现只要一个bit内存就可以完成我们想…...
2016年认证杯SPSSPRO杯数学建模D题(第二阶段)NBA是否有必要设立四分线全过程文档及程序
2016年认证杯SPSSPRO杯数学建模 D题 NBA是否有必要设立四分线 原题再现: NBA 联盟从 1946 年成立到今天,一路上经历过无数次规则上的变迁。有顺应民意、皆大欢喜的,比如 1973 年在技术统计中增加了抢断和盖帽数据;有应运而生、力…...
登录校验解决方案JWT
目录 🎗️1.JWT介绍 🎞️2.应用场景 🎟️3.结构组成 🎫4.JWT优点 🎠5.封装成通用方法 🛝6.JWT自动刷新 1.JWT介绍 官网:JWT官网 JSON Web Token (JWT) 是一个开放标准,它…...
Flutter开发进阶之瞧瞧BuildOwner
Flutter开发进阶之瞧瞧BuildOwner 上回说到关于Element Tree的构建还缺最后一块拼图,build的重要过程中会调用_element!.markNeedsBuild();,而markNeedsBuild会调用owner!.scheduleBuildFor(this);。 在Flutter框架中,BuildOwner负责管理构建…...
大量免费工具使用(提供api接口)
标题: 免费工具集使用 - 简化你的任务 介绍: 在数字化时代,我们经常需要使用各种工具来完成各种任务。本文将介绍一个免费工具集,它提供了多种实用工具,帮助简化你的任务。这些工具可以在网站 https://tool.kertennet.com 上找到…...
网络探测工具Nmap介绍
1. Nmap简介 Nmap是一款用于网络发现和安全审计的网络安全工具。可用于列举网络主机清单、管理服务升级调度、监控主机、监控主机服务运行状况、检测目标主机是否在线和端口开放情况、侦测运行的服务类型及版本信息、侦测操作系统与设备类型等。 2. 命令大纲 3. 命令详细介绍…...
20240319-2-机器学习基础面试题
⽼板给了你⼀个关于癌症检测的数据集,你构建了⼆分类器然后计算了准确率为 98%, 你是否对这个模型很满意?为什么?如果还不算理想,接下来该怎么做? 首先模型主要是找出患有癌症的患者,模型关注的…...
0202矩阵的运算-矩阵及其运算-线性代数
文章目录 一、矩阵的加法二、数与矩阵相乘三、矩阵与矩阵相乘四、矩阵的转置五、方阵的行列式结语 一、矩阵的加法 定义2 设有两个 m n m\times n mn橘子 A ( a i j ) 和 B ( b i j ) A(a_{ij})和B(b_{ij}) A(aij)和B(bij),那么矩阵A与B的和记为AB,规定为 A B ( a 11…...
python中的__dict__
类的__dict__返回的是:类的静态函数、类函数、普通函数、全局变量以及一些内置的属性都是放在类的__dict__里的, 而实例化对象的:__dict__中存储了一些类中__init__的一些属性值。 import的py文件 __dict__返回的是:__init__的…...
数学分析复习:无穷乘积
文章目录 无穷乘积定义:无穷乘积的收敛性命题:无穷乘积的Cauchy收敛准则正项级数和无穷乘积的联系 本篇文章适合个人复习翻阅,不建议新手入门使用 无穷乘积 设复数列 { a n } n ≥ 1 \{a_n\}_{n\geq 1} {an}n≥1,设对任意 …...
02 React 组件使用
import React, { useState } from react;// 定义一个简单的函数式组件 function Counter() {// 使用 useState hook 来创建一个状态变量 count,并提供修改该状态的函数 setCountconst [count, setCount] useState(0);// 在点击按钮时增加计数器的值const increment…...
你就是上帝
你就是上帝:Jv程序员,请你站在上帝或神的角度 1.万物皆有裂缝 按照西方文化(宗教神话,古希腊、古罗马等),上帝创建了人; 创建人之前,还创建了人的居所或地盘/栖息地(伊…...
Spring Cloud: openFegin使用
文章目录 一、OpenFeign简介二、Springboot集成OpenFeign1、引入依赖2、EnableFeignClients注解(1)应用(2)属性解析 3、 FeignClient(1)应用(2)属性解析(3)向…...
流畅的 Python 第二版(GPT 重译)(二)
第三章:字典和集合 Python 基本上是用大量语法糖包装的字典。 Lalo Martins,早期数字游牧民和 Pythonista 我们在所有的 Python 程序中都使用字典。即使不是直接在我们的代码中,也是间接的,因为dict类型是 Python 实现的基本部分。…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
音视频——I2S 协议详解
I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议,专门用于在数字音频设备之间传输数字音频数据。它由飞利浦(Philips)公司开发,以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...
