Amuse:.NET application for stable diffusion

目录
Welcome to Amuse!
Features
Why Choose Amuse?
Key Highlights
Paint To Image
Text To Image
Image To Image
Image Inpaint
Model Manager
Hardware Requirements
Compute Requirements
Memory Requirements
System Requirements
Realtime Requirements

Welcome to Amuse!
Amuse is a professional and intuitive Windows UI for harnessing the capabilities of the ONNX (Open Neural Network Exchange) platform, allowing you to easily augment and enhance your creativity with the power of AI.
Amuse, written entirely in .NET, operates locally with a dependency-free architecture, providing a secure and private environment and eliminating the need for intricate setups or external dependencies such as Python. Unlike solutions reliant on external APIs, Amuse functions independently, ensuring privacy by operating offline. External connections are limited to the essential process of downloading models, preserving the security of your data and shielding your creative endeavors from external influences.
Experience the power of AI without compromise
Features
-
Paint To Image: Experience real-time AI-generated drawing-based art with stable diffusion.
-
Text To Image: Generate stunning images from text descriptions with AI-powered creativity.
-
Image To Image: Transform images seamlessly using advanced machine learning models.
-
Image Inpaint: Effortlessly fill in missing or damaged parts of images with intelligent inpainting.
-
Model Management: Install, download and manage all your models in a simple user interafce.
Amuse provides compatibility with a diverse set of models, including
- StableDiffusion 1.5
- StableDiffusion Inpaint
- SDXL
- SDXL Inpaint
- SDXL-Turbo
- LatentConsistency
- LatentConsistency XL
- Instaflow
Why Choose Amuse?
Amuse isn’t just a tool; it’s a gateway to a new realm of AI-enhanced creativity. Unlike traditional machine learning frameworks, Amuse is tailored for artistic expression and visual transformation. This Windows UI brings the power of AI to your fingertips, offering a unique experience in crafting AI-generated art.
Key Highlights
-
Intuitive AI-Enhanced Editing: Seamlessly edit and enhance images using advanced machine learning models.
-
Creative Freedom: Unleash your imagination with Text To Image, Image To Image, Image Inpaint, and Live Paint Stable Diffusion features, allowing you to explore novel ways of artistic expression.
-
Real-Time Results: Witness the magic unfold in real-time as Amuse applies live inference, providing instant feedback and empowering you to make creative decisions on the fly.
Amuse is not about building or deploying; it’s about bringing AI directly into your creative process. Elevate your artistic endeavors with Amuse, the AI-augmented companion for visual storytellers and digital artists.
Paint To Image
Paint To Image is a cutting-edge image processing technique designed to revolutionize the creative process. This method allows users to paint on a canvas, transforming their artistic expressions into high-quality images while preserving the unique style and details of the original artwork. Harnessing the power of stable diffusion, Paint To Image opens up a realm of possibilities for artistic endeavors, enabling users to seamlessly translate their creative brushstrokes into visually stunning images. Whether it’s digital art creation, stylized rendering, or other image manipulation tasks, Paint To Image delivers a versatile and intuitive solution for transforming painted canvases into captivating digital masterpieces.
Paint To Image
Text To Image
Text To Image Stable Diffusion is a powerful machine learning technique that allows you to generate high-quality images from textual descriptions. It combines the capabilities of text understanding and image synthesis to convert natural language descriptions into visually coherent and meaningful images
Text To Image
Image To Image
Image To Image Stable Diffusion is an advanced image processing and generation method that excels in transforming one image into another while preserving the visual quality and structure of the original content. Using stable diffusion, this technique can perform a wide range of image-to-image tasks, such as style transfer, super-resolution, colorization, and more
Image To Image
Image Inpaint
Image inpainting is an image modification/restoration technique that intelligently fills in missing or damaged portions of an image while maintaining visual consistency. It’s used for tasks like photo restoration and object removal, creating seamless and convincing results.
Image Inpaint
Model Manager
Discover the simplicity of our Model Manager – your all-in-one tool for stress-free model management. Easily navigate through an intuitive interface that takes the hassle out of deploying, updating, and monitoring your stable diffusion models. No need for configuration headaches; our Model Manager makes it a breeze to install new models. Stay in control effortlessly, and let your creative process evolve smoothly.
Hardware Requirements
Compute Requirements
Generating results demands significant computational time. Below are the minimum requirements for accomplishing such tasks using Amuse
| Device | Requirement |
|---|---|
| CPU | Any modern Intel/AMD |
| AMD GPU | Radeon HD 7000 series and above |
| Intel | HD Integrated Graphics and above (4th-gen core) |
| NVIDIA | GTX 600 series and above. |
Memory Requirements
AI operations can be memory-intensive. Below is a small table outlining the minimum RAM or VRAM requirements for Amuse
| Model | Device | Precision | RAM/VRAM |
|---|---|---|---|
| Stable Diffusion | GPU | 16 | ~4GB |
| Stable Diffusion | CPU/GPU | 32 | ~8GB |
| SDXL | CPU/GPU | 32 | ~18GB |
System Requirements
Amuse provides various builds tailored for specific hardware. DirectML is the default choice, offering the broadest compatibility across devices.
| Build | Device | Requirements |
|---|---|---|
| CPU | CPU | None |
| DirectML | CPU, AMD GPU, Nvidia GPU | At least Windows10 |
| CUDA | Nvidia GPU | CUDA 11 and cuDNN toolkit |
| TensorRT | Nvidia GPU | CUDA 11 , cuDNN and TensorRT libraries |
Realtime Requirements
Real-time stable diffusion introduces a novel concept and demands a substantial amount of resources. The table below showcases achievable speeds on commonly tested graphics cards
| Device | Model | FPS |
|---|---|---|
| GTX 2080 | LCM_Dreamshaper_v7_Olive_Onnx | 1-2 |
| RTX 3090 | LCM_Dreamshaper_v7_Olive_Onnx | 3-4 |
相关文章:
Amuse:.NET application for stable diffusion
目录 Welcome to Amuse! Features Why Choose Amuse? Key Highlights Paint To Image Text To Image Image To Image Image Inpaint Model Manager Hardware Requirements Compute Requirements Memory Requirements System Requirements Realtime Requirements…...
Java冒泡排序详细讲解
冒泡排序是一种简单但效率较低的排序算法,它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。具体实现如下: 算法步骤: 比较相邻的元素:从第一个元素开始,依次…...
python数据解析xpath
前言一、安装?二、使用步骤1.基本使用**【2】谓语(Predicates)**案例 前言 xpath在Python的爬虫学习中,起着举足轻重的地位,对比正则表达式 re两者可以完成同样的工作,实现的功能也差不多,但xp…...
工业镜头常用参数之实效F(Fno.)和像圈
Fno. 工业镜头中常用到的参数F,有时候用F/#,Fno.来表示,指的是镜头通光能力的参数。它可用镜头焦距及入瞳直径来表示,也可通过镜头数值孔径(NA)和光学放大倍率(β)来计算。有效Fno.…...
what is apache?
Apache 通常指 Apache Software Foundation (ASF) 或 Apache HTTP Server,两者都是计算机软件领域的重要实体。 Apache 软件基金会 (ASF):Apache 软件基金会是一个开发开源软件项目的非营利组织。它为涵盖软件开发各个方面的广泛项目提供支持,…...
【二叉树】Leetcode 94. 二叉树的中序遍历【简单】
二叉树的中序遍历 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root [1,null,2,3] 输出:[1,3,2] 解题思路 中序遍历是一种二叉树遍历方式,按照“左根右”的顺序遍历二叉树节点。 1、递归…...
Linux进程控制(等待)
进程等待 为什么要进行进程等待 进程等待是什么? 怎么进行进程等待? 回到我们之前进程状态的代码, 我们知道, 在这段代码中,父进程对子进程没有做任何的操作, 所以当子进程在退出后, 会一直处于…...
结构体-C语言
目录 前言 一、定义结构 结构体变量的创建和初始化 二、结构的特殊声明 特别注意: 结构的⾃引⽤ 三、结构体内存对⻬ 对⻬规则 优化结构体 #pragma 结构体传参 四、结构体实现位段 位段的内存分配 位段的跨平台问题 前言 C 数组允许定义可存储相同类…...
Unity DOTS中的baking(四)blob assets
Unity DOTS中的baking(四)blob assets blob assets表示不可变的二进制数据,在运行时也不会发生更改。由于blob assets是只读的,这意味着可以安全地并行访问它们。此外,blob assets仅限于使用非托管类型,这意…...
第三十天-Flask模板 Jinja2
目录 1.什么是模板 2.模板引擎Jinja2 默认配置 全局对象 全局函数 上下文处理器 3.模板中变量的使用 4.模板标签 条件判断if else for循环 添加注释 设置变量 转义显示 5.过滤器 过滤器使用 自定义过滤器 6.全局函数 7.模板中的宏 模板的基础 包含语法 8.…...
在项目中数据库如何优化?【MySQL主从复制(创建一个从节点复制备份数据)】【数据库读写分离ShardingJDBC(主库写,从库读)】
MySQL主从复制 MySQL主从复制介绍MySQL复制过程分成三步:1). MySQL master 将数据变更写入二进制日志( binary log)2). slave将master的binary log拷贝到它的中继日志(relay log)3). slave重做中继日志中的事件,将数据变更反映它自…...
Fragment 与 ViewPager的联合应用(2)
5.创建底部布局bottom_layout <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:orientation"horizontal"android:layout_width"match_parent"android:layout_height"55dp"android:background&qu…...
OriginBot智能机器人开源套件
详情可参见:OriginBot智能机器人开源套件——支持ROS2/TogetherROS,算力强劲,配套古月居定制课程 (guyuehome.com) OriginBot智能机器人开源套件 最新消息:OriginBot V2.1.0版本正式发布,新增车牌识别,点击…...
Java Web-Maven
Maven是apache旗下的一个开源项目,是一款用于管理和构建java项目的工具 Maven的作用 1.依赖管理:方便快捷的管理项目依赖资源(jar包),避免版本冲突问题 我们有的项目需要大量的jar包,采用手动导包的方式非常繁琐,并且版本升级也…...
.Net 异步委托
委托的 BeginInvoke 方法和 EndInvoke 方法可以实现异步执行委托方法。这允许委托的方法在后台线程中执行,而不会阻塞当前线程。小编在之前的webform开发中遇到下载进度条卡死的问题就是用它解决的。 案例: namespace ConsoleApplication1 {class Progr…...
web前端面试题---->HTML、CSS
一.居中方法 block元素如何居中 margin:0 auto;position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%);flex布局: 对父元素操作 : justify-content:center; al…...
移动端Web笔记day03
移动 Web 第三题 01-移动 Web 基础 谷歌模拟器 模拟移动设备,方便查看页面效果,移动端的效果是当手机屏幕发生了变化,页面和页面中的元素也要跟着等比例变化。 屏幕分辨率 分类: 硬件分辨路 -> 物理分辨率:硬件…...
c++的学习之路:3、入门(2)
一、引用 1、引用的概念 引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间,它和它引用的变量共用同一块内存空间。 怎么说呢,简单点理解就是你的小名,家里人叫你小名&#…...
面试经典150题【91-100】
文章目录 面试经典150题【91-100】70.爬楼梯198.打家劫舍139.单词拆分322.零钱兑换300.递增最长子序列77.组合46.全排列39.组合总和(※)22.括号生成79.单词搜索 面试经典150题【91-100】 五道一维dp题五道回溯题。 70.爬楼梯 从递归到动态规划 public …...
在 nginx 中使用 JavaScript
前些日子尝试了在 nginx 中写 JavaScript 的效果。考虑到 JavaScript 作为编程语言不是强需求,在nginx生态上还是 lua 独大,并且还有 openresty 这样一直强力输血,大部分应用场景都能找到参考的解决方案。 插件生态来说,github 上…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题
20250609在荣品的PRO-RK3566开发板的Android13下解决串口可以执行命令但是脚本执行命令异常的问题 2025/6/9 20:54 缘起,为了跨网段推流,千辛万苦配置好了网络参数。 但是命令iptables -t filter -F tetherctrl_FORWARD可以在调试串口/DEBUG口正确执行。…...
设计模式-3 行为型模式
一、观察者模式 1、定义 定义对象之间的一对多的依赖关系,这样当一个对象改变状态时,它的所有依赖项都会自动得到通知和更新。 描述复杂的流程控制 描述多个类或者对象之间怎样互相协作共同完成单个对象都无法单独度完成的任务 它涉及算法与对象间职责…...
青少年编程与数学 01-011 系统软件简介 08 Windows操作系统
青少年编程与数学 01-011 系统软件简介 08 Windows操作系统 1. Windows操作系统的起源与发展1.1 早期版本(1985-1995)1.2 Windows 9x系列(1995-2000)1.3 Windows NT系列(1993-2001)1.4 Windows XP及以后版…...
