Amuse:.NET application for stable diffusion
目录
Welcome to Amuse!
Features
Why Choose Amuse?
Key Highlights
Paint To Image
Text To Image
Image To Image
Image Inpaint
Model Manager
Hardware Requirements
Compute Requirements
Memory Requirements
System Requirements
Realtime Requirements
Welcome to Amuse!
Amuse is a professional and intuitive Windows UI for harnessing the capabilities of the ONNX (Open Neural Network Exchange) platform, allowing you to easily augment and enhance your creativity with the power of AI.
Amuse, written entirely in .NET, operates locally with a dependency-free architecture, providing a secure and private environment and eliminating the need for intricate setups or external dependencies such as Python. Unlike solutions reliant on external APIs, Amuse functions independently, ensuring privacy by operating offline. External connections are limited to the essential process of downloading models, preserving the security of your data and shielding your creative endeavors from external influences.
Experience the power of AI without compromise
Features
-
Paint To Image: Experience real-time AI-generated drawing-based art with stable diffusion.
-
Text To Image: Generate stunning images from text descriptions with AI-powered creativity.
-
Image To Image: Transform images seamlessly using advanced machine learning models.
-
Image Inpaint: Effortlessly fill in missing or damaged parts of images with intelligent inpainting.
-
Model Management: Install, download and manage all your models in a simple user interafce.
Amuse provides compatibility with a diverse set of models, including
- StableDiffusion 1.5
- StableDiffusion Inpaint
- SDXL
- SDXL Inpaint
- SDXL-Turbo
- LatentConsistency
- LatentConsistency XL
- Instaflow
Why Choose Amuse?
Amuse isn’t just a tool; it’s a gateway to a new realm of AI-enhanced creativity. Unlike traditional machine learning frameworks, Amuse is tailored for artistic expression and visual transformation. This Windows UI brings the power of AI to your fingertips, offering a unique experience in crafting AI-generated art.
Key Highlights
-
Intuitive AI-Enhanced Editing: Seamlessly edit and enhance images using advanced machine learning models.
-
Creative Freedom: Unleash your imagination with Text To Image, Image To Image, Image Inpaint, and Live Paint Stable Diffusion features, allowing you to explore novel ways of artistic expression.
-
Real-Time Results: Witness the magic unfold in real-time as Amuse applies live inference, providing instant feedback and empowering you to make creative decisions on the fly.
Amuse is not about building or deploying; it’s about bringing AI directly into your creative process. Elevate your artistic endeavors with Amuse, the AI-augmented companion for visual storytellers and digital artists.
Paint To Image
Paint To Image is a cutting-edge image processing technique designed to revolutionize the creative process. This method allows users to paint on a canvas, transforming their artistic expressions into high-quality images while preserving the unique style and details of the original artwork. Harnessing the power of stable diffusion, Paint To Image opens up a realm of possibilities for artistic endeavors, enabling users to seamlessly translate their creative brushstrokes into visually stunning images. Whether it’s digital art creation, stylized rendering, or other image manipulation tasks, Paint To Image delivers a versatile and intuitive solution for transforming painted canvases into captivating digital masterpieces.
Paint To Image
Text To Image
Text To Image Stable Diffusion is a powerful machine learning technique that allows you to generate high-quality images from textual descriptions. It combines the capabilities of text understanding and image synthesis to convert natural language descriptions into visually coherent and meaningful images
Text To Image
Image To Image
Image To Image Stable Diffusion is an advanced image processing and generation method that excels in transforming one image into another while preserving the visual quality and structure of the original content. Using stable diffusion, this technique can perform a wide range of image-to-image tasks, such as style transfer, super-resolution, colorization, and more
Image To Image
Image Inpaint
Image inpainting is an image modification/restoration technique that intelligently fills in missing or damaged portions of an image while maintaining visual consistency. It’s used for tasks like photo restoration and object removal, creating seamless and convincing results.
Image Inpaint
Model Manager
Discover the simplicity of our Model Manager – your all-in-one tool for stress-free model management. Easily navigate through an intuitive interface that takes the hassle out of deploying, updating, and monitoring your stable diffusion models. No need for configuration headaches; our Model Manager makes it a breeze to install new models. Stay in control effortlessly, and let your creative process evolve smoothly.
Hardware Requirements
Compute Requirements
Generating results demands significant computational time. Below are the minimum requirements for accomplishing such tasks using Amuse
Device | Requirement |
---|---|
CPU | Any modern Intel/AMD |
AMD GPU | Radeon HD 7000 series and above |
Intel | HD Integrated Graphics and above (4th-gen core) |
NVIDIA | GTX 600 series and above. |
Memory Requirements
AI operations can be memory-intensive. Below is a small table outlining the minimum RAM or VRAM requirements for Amuse
Model | Device | Precision | RAM/VRAM |
---|---|---|---|
Stable Diffusion | GPU | 16 | ~4GB |
Stable Diffusion | CPU/GPU | 32 | ~8GB |
SDXL | CPU/GPU | 32 | ~18GB |
System Requirements
Amuse provides various builds tailored for specific hardware. DirectML is the default choice, offering the broadest compatibility across devices.
Build | Device | Requirements |
---|---|---|
CPU | CPU | None |
DirectML | CPU, AMD GPU, Nvidia GPU | At least Windows10 |
CUDA | Nvidia GPU | CUDA 11 and cuDNN toolkit |
TensorRT | Nvidia GPU | CUDA 11 , cuDNN and TensorRT libraries |
Realtime Requirements
Real-time stable diffusion introduces a novel concept and demands a substantial amount of resources. The table below showcases achievable speeds on commonly tested graphics cards
Device | Model | FPS |
---|---|---|
GTX 2080 | LCM_Dreamshaper_v7_Olive_Onnx | 1-2 |
RTX 3090 | LCM_Dreamshaper_v7_Olive_Onnx | 3-4 |
相关文章:

Amuse:.NET application for stable diffusion
目录 Welcome to Amuse! Features Why Choose Amuse? Key Highlights Paint To Image Text To Image Image To Image Image Inpaint Model Manager Hardware Requirements Compute Requirements Memory Requirements System Requirements Realtime Requirements…...
Java冒泡排序详细讲解
冒泡排序是一种简单但效率较低的排序算法,它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。具体实现如下: 算法步骤: 比较相邻的元素:从第一个元素开始,依次…...
python数据解析xpath
前言一、安装?二、使用步骤1.基本使用**【2】谓语(Predicates)**案例 前言 xpath在Python的爬虫学习中,起着举足轻重的地位,对比正则表达式 re两者可以完成同样的工作,实现的功能也差不多,但xp…...

工业镜头常用参数之实效F(Fno.)和像圈
Fno. 工业镜头中常用到的参数F,有时候用F/#,Fno.来表示,指的是镜头通光能力的参数。它可用镜头焦距及入瞳直径来表示,也可通过镜头数值孔径(NA)和光学放大倍率(β)来计算。有效Fno.…...

what is apache?
Apache 通常指 Apache Software Foundation (ASF) 或 Apache HTTP Server,两者都是计算机软件领域的重要实体。 Apache 软件基金会 (ASF):Apache 软件基金会是一个开发开源软件项目的非营利组织。它为涵盖软件开发各个方面的广泛项目提供支持,…...

【二叉树】Leetcode 94. 二叉树的中序遍历【简单】
二叉树的中序遍历 给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。 示例 1: 输入:root [1,null,2,3] 输出:[1,3,2] 解题思路 中序遍历是一种二叉树遍历方式,按照“左根右”的顺序遍历二叉树节点。 1、递归…...

Linux进程控制(等待)
进程等待 为什么要进行进程等待 进程等待是什么? 怎么进行进程等待? 回到我们之前进程状态的代码, 我们知道, 在这段代码中,父进程对子进程没有做任何的操作, 所以当子进程在退出后, 会一直处于…...
结构体-C语言
目录 前言 一、定义结构 结构体变量的创建和初始化 二、结构的特殊声明 特别注意: 结构的⾃引⽤ 三、结构体内存对⻬ 对⻬规则 优化结构体 #pragma 结构体传参 四、结构体实现位段 位段的内存分配 位段的跨平台问题 前言 C 数组允许定义可存储相同类…...

Unity DOTS中的baking(四)blob assets
Unity DOTS中的baking(四)blob assets blob assets表示不可变的二进制数据,在运行时也不会发生更改。由于blob assets是只读的,这意味着可以安全地并行访问它们。此外,blob assets仅限于使用非托管类型,这意…...

第三十天-Flask模板 Jinja2
目录 1.什么是模板 2.模板引擎Jinja2 默认配置 全局对象 全局函数 上下文处理器 3.模板中变量的使用 4.模板标签 条件判断if else for循环 添加注释 设置变量 转义显示 5.过滤器 过滤器使用 自定义过滤器 6.全局函数 7.模板中的宏 模板的基础 包含语法 8.…...

在项目中数据库如何优化?【MySQL主从复制(创建一个从节点复制备份数据)】【数据库读写分离ShardingJDBC(主库写,从库读)】
MySQL主从复制 MySQL主从复制介绍MySQL复制过程分成三步:1). MySQL master 将数据变更写入二进制日志( binary log)2). slave将master的binary log拷贝到它的中继日志(relay log)3). slave重做中继日志中的事件,将数据变更反映它自…...

Fragment 与 ViewPager的联合应用(2)
5.创建底部布局bottom_layout <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"android:orientation"horizontal"android:layout_width"match_parent"android:layout_height"55dp"android:background&qu…...

OriginBot智能机器人开源套件
详情可参见:OriginBot智能机器人开源套件——支持ROS2/TogetherROS,算力强劲,配套古月居定制课程 (guyuehome.com) OriginBot智能机器人开源套件 最新消息:OriginBot V2.1.0版本正式发布,新增车牌识别,点击…...

Java Web-Maven
Maven是apache旗下的一个开源项目,是一款用于管理和构建java项目的工具 Maven的作用 1.依赖管理:方便快捷的管理项目依赖资源(jar包),避免版本冲突问题 我们有的项目需要大量的jar包,采用手动导包的方式非常繁琐,并且版本升级也…...
.Net 异步委托
委托的 BeginInvoke 方法和 EndInvoke 方法可以实现异步执行委托方法。这允许委托的方法在后台线程中执行,而不会阻塞当前线程。小编在之前的webform开发中遇到下载进度条卡死的问题就是用它解决的。 案例: namespace ConsoleApplication1 {class Progr…...

web前端面试题---->HTML、CSS
一.居中方法 block元素如何居中 margin:0 auto;position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%);flex布局: 对父元素操作 : justify-content:center; al…...

移动端Web笔记day03
移动 Web 第三题 01-移动 Web 基础 谷歌模拟器 模拟移动设备,方便查看页面效果,移动端的效果是当手机屏幕发生了变化,页面和页面中的元素也要跟着等比例变化。 屏幕分辨率 分类: 硬件分辨路 -> 物理分辨率:硬件…...

c++的学习之路:3、入门(2)
一、引用 1、引用的概念 引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间,它和它引用的变量共用同一块内存空间。 怎么说呢,简单点理解就是你的小名,家里人叫你小名&#…...

面试经典150题【91-100】
文章目录 面试经典150题【91-100】70.爬楼梯198.打家劫舍139.单词拆分322.零钱兑换300.递增最长子序列77.组合46.全排列39.组合总和(※)22.括号生成79.单词搜索 面试经典150题【91-100】 五道一维dp题五道回溯题。 70.爬楼梯 从递归到动态规划 public …...
在 nginx 中使用 JavaScript
前些日子尝试了在 nginx 中写 JavaScript 的效果。考虑到 JavaScript 作为编程语言不是强需求,在nginx生态上还是 lua 独大,并且还有 openresty 这样一直强力输血,大部分应用场景都能找到参考的解决方案。 插件生态来说,github 上…...

龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...

.Net框架,除了EF还有很多很多......
文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...

在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...