pytorch剪枝
原文:https://blog.51cto.com/u_16213398/10059574
Pytorch剪枝实现指南
指南概述
在这篇文章中,我将向你介绍如何在PyTorch中实现模型剪枝。剪枝是一种优化模型的技术,可以帮助减少模型的大小和计算量,同时保持模型的准确性。我将为你提供一个详细的步骤指南,并指导你如何在每个步骤中使用适当的PyTorch代码。
整体流程
下面是实现PyTorch剪枝的整体流程,我们将按照这些步骤逐步进行操作:
步骤 | 操作 |
---|---|
1. | 加载预训练模型 |
2. | 定义剪枝算法 |
3. | 执行剪枝操作 |
4. | 重新训练和微调模型 |
5. | 评估剪枝后的模型性能 |
步骤详解
步骤1:加载预训练模型
首先,我们需要加载一个预训练的模型作为我们的基础模型。在这里,我们以ResNet18为例。
import torch
import torchvision.models as models# 加载预训练的ResNet18模型
model = models.resnet18(pretrained=True)
步骤2:定义剪枝算法
接下来,我们需要定义一个剪枝算法,这里我们以Global Magnitude Pruning(全局幅度剪枝)为例。
from torch.nn.utils.prune import global_unstructured# 定义剪枝比例
pruning_rate = 0.5# 对模型的全连接层进行剪枝
def prune_model(model, pruning_rate):for name, module in model.named_modules():if isinstance(module, torch.nn.Linear):global_unstructured(module, pruning_dim=0, amount=pruning_rate)
步骤3:执行剪枝操作
现在,我们可以执行剪枝操作,并查看剪枝后的模型结构。
prune_model(model, pruning_rate)# 查看剪枝后的模型结构
print(model)
步骤4:重新训练和微调模型
剪枝后的模型需要重新进行训练和微调,以保证模型的准确性和性能。
# 定义损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)# 重新训练和微调模型
# 省略训练代码
步骤5:评估剪枝后的模型性能
最后,我们需要对剪枝后的模型进行评估,以比较剪枝前后的性能差异。
# 评估剪枝后的模型
# 省略评估代码
类图
下面是一个简单的类图,展示了剪枝操作中涉及的主要类和关系:
Model- layers- parameters+forward()+backward()PruningAlgorithms+global_unstructured()+global_structured()+filter_pruning()
通过上面的步骤指南和代码示例,相信你可以学会如何在PyTorch中实现模型剪枝。剪枝是一个有效的模型优化技术,可以帮助你构建更加高效和精确的深度学习模型。祝你学习顺利!
相关文章:
pytorch剪枝
原文:https://blog.51cto.com/u_16213398/10059574 Pytorch剪枝实现指南 指南概述 在这篇文章中,我将向你介绍如何在PyTorch中实现模型剪枝。剪枝是一种优化模型的技术,可以帮助减少模型的大小和计算量,同时保持模型的准确性。…...

马斯克旗下xAI发布Grok-1.5,相比较开源的Grok-1,各项性能大幅提升,接近GPT-4!
本文原文来自DataLearnerAI官方网站:马斯克旗下xAI发布Grok-1.5,相比较开源的Grok-1,各项性能大幅提升,接近GPT-4! | 数据学习者官方网站(Datalearner) 继Grok-1开源之后,xAI宣布了Grok-1.5的内测消息&…...

数据结构与算法 顺序串的基本运算
一、实验内容 编写一个程序sqstring.cpp,实现顺序串的各种基本运算,并在此基础上实现一个程序exp7.cpp,完成以下功能: (1)建立串s“abcdefghefghijklmn”和串s1“xyz” (2)输出串…...

2024年04月数据库流行度最新排名
点击查看最新数据库流行度最新排名(每月更新) 2024年04月数据库流行度最新排名 TOP DB顶级数据库索引是通过分析在谷歌上搜索数据库名称的频率来创建的 一个数据库被搜索的次数越多,这个数据库就被认为越受欢迎。这是一个领先指标。原始数…...
golang语言系列:SOLID、YAGNI、KISS等设计原则
云原生学习路线导航页(持续更新中) 本文是 golang语言系列 文章,主要对编程通用技能 SOLID、YAGNI、KISS等设计原则 进行学习 1.SOLID设计原则 S:SRP,单一职责原则O:OCP,开闭原则L:…...

Meta Pixel:助你实现高效地Facebook广告追踪
Meta Pixel 像素代码是用來衡量Facebook广告效果的一个官方数据工具,只要商家有在Facebook上投放广告就需要串联Meta Pixel 像素代码来查看相关数据。 它本质上是一段 JavaScript 代码,安装后可以让用户在自己网站上查看到访客活动。它的工作原理是加载…...

基于Arduino IDE 野火ESP8266模块 文件系统LittleFS 的开发
一、文件系统LittleFS的介绍 LittleFS是一个为微控制器设计的轻量级、可靠且高性能的文件系统。它专为嵌入式设备打造,拥有占用空间小、对硬件要求低的特点,同时保证在断电情况下数据的完整性和稳定性。 1.设计与特点 LittleFS的设计旨在提供嵌入式系统所…...

通讯录改造———文件版本
上一篇文章我们详细讲了文件操作,这时候我们就可以把通讯录保存到文件中,这样即使程序退出了,联系人的信息也还是保存着,下一次启动程序时我们就可以把文件中的数据读取到程序中来使用。 保存 首先我们要在退出通讯录之前把联系人…...
FastAPI Web框架教程 第13章 WebSocket
13-1 WebSocket是什么 WebSocket简介: WebSocket是一种在单个TCP连接上进行全双工通信的协议。 WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据。 在WebSocket API中,浏览器和服务器只需要完成一…...

将 Elasticsearch 向量数据库引入到数据上的 Azure OpenAI 服务(预览)
作者:来自 Elastic Aditya Tripathi Microsoft 和 Elastic 很高兴地宣布,全球下载次数最多的向量数据库 Elasticsearch 是公共预览版中 Azure OpenAI Service On Your Data 官方支持的向量存储和检索增强搜索技术。 这项突破性的功能使你能够利用 GPT-4 …...
SeLinux 常见的宏
在SeLinux框架中,google定义好了一些宏,我们使用这些宏,开发时可以更加方便。大部分的宏是定义在te_macros文件中 type_transition type_transition source_type target_type : class default_type当主体进程域source_type 对target_type 类…...

图解PyTorch中的torch.gather函数和 scatter 函数
前言 torch.gather在目前基于 transformer or query based 的目标检测中,在最后获取目标结果时,经常用到。 这里记录下用法,防止之后又忘了。 介绍 torch.gather 官方文档对torch.gather()的定义非常简洁 定义:从原tensor中获…...
Pytorch实用教程: torch.tensor()的用法
在PyTorch中,torch.tensor()函数是用来创建张量(Tensor)的一个非常基础和重要的函数。张量是PyTorch中的基本数据结构,用于存储和操作数据,可以看作是一个高维数组。torch.tensor()函数可以从数据创建新的张量…...
Java设计模式详解:工厂模式
Java设计模式详解:工厂模式 文章目录 Java设计模式详解:工厂模式前言一、工厂模式是个啥?二、工厂模式怎么用?三、工厂模式啥时候用?四、工厂模式的优点总结 前言 今天咱们来聊聊设计模式中的一位重要成员——工厂模式…...

Python爬虫:爬虫常用伪装手段
目录 前言 一、设置User-Agent 二、设置Referer 三、使用代理IP 四、限制请求频率 总结 前言 随着互联网的快速发展,爬虫技术在网络数据采集方面发挥着重要的作用。然而,由于爬虫的使用可能会对被爬取的网站造成一定的压力,因此&#…...

【数据结构】非线性结构---二叉树
1、树 1.1 树的相关概念 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6 叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点 非终端节点或分支节点&#…...

【战略前沿】与中国达成生产协议后,飞行汽车即将起飞
【原文】Flying cars edge towards takeoff after Chinese production deal 【作者】Thomas Macaulay 斯洛伐克公司KleinVision签署了一项协议,将大规模生产AirCar。 一辆获得航空认证的飞行汽车向商业化又迈出了一大步。 空中汽车的创造者KleinVision今天宣布出售…...

谷粒商城实战(007 压力测试)
Java项目《谷粒商城》架构师级Java项目实战,对标阿里P6-P7,全网最强 总时长 104:45:00 共408P 此文章包含第141p-第p150的内容 简介 安装jmeter 安装jmeter 使用中文 这样写就是200个线程循环100次 一共是2万个请求 介绍线程组 添加请求 可以是htt…...

使用CSS计数器,在目录名称前加上了序号,让目录看起来更加井然有序
目录(Text of Contents缩写为TOC),其实就是一篇文章的概要或简述。这好比,去书店买书,先是被这本书的标题所吸引,而后我们才会,翻开这本书目录,看看这本书主要是在讲些什么ÿ…...
SSH常见运维总结
1 -bash: ssh: command not found 解决办法:"yum install -y openssh-server openssh-clinets" 2 ssh登录时提示:Read from socket failed: Connection reset by peer. 原因:/etc/ssh/下没有ssh*key*文件 解决&…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...

使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...