yolo v8 教程(不出5行代码让你学会)
Solving environment: failedPackagesNotFoundError: The following packages are not available from current channels:- python==3.8
https://github.com/ultralytics
下滑来到
先来介绍为什么写这篇博客,
一. 是我之前的yolov5的博客挺多人访问的,但是现在都2024年了,大家也要与时俱进,所以给大家带来最新的yolo v8
二.是因为我已经快毕业了,已经不是当初那个小白了,因此出一篇原创的教学
不多逼逼 开始装B 最近 strong哥挺火的哈哈
下滑找到readme
可以中文哦
Python>=3.8 environment with PyTorch>=1.8.
pip install ultralytics
enmmm
接下来是实操啊 打开pycharm 跟上我的节奏
1.创建一个属于你的虚拟工作环境
conda create -n yolo8 python==3.8
哈哈 突然遇到点小插曲
conda search python
随便找个可用的修改即可
我的是这个,其实大家基本上这里是不会出现问题的
输入 y即可 等待
出现这些就表示创建成功
我们启动一下这个虚拟环境
conda activate yolo8
出现yolo8表示成功
我们完成了第一步,还有第二步装配pytorch
往下滑
找到这个
注意哦:这里就有不同电脑不同区分了,如果有gpu就会有cuda加速,如果没有就跟我一样乖乖用cpu
这里吧 mac也可以的 就是不要找有cuda的
但是有的话,要看清楚自己的cuda版本
nvidia-smi
自己去确定cuda版本
pip install torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
其实关于pytorch版本,enmmm听话准没错,其实也可以用更高版本的
哈哈 真是命途多舛 真有教学意义啊
这里直接大家如果跟我一样只有cpu的话
pip install torch
注意啊啊 正文开始
在创立好的虚拟环境下
pip install ultralytics
直接来
表示安装成功
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
测试一下
在这里表示 非常成功 哇 好简单 什么垃圾v5 v8上手真快 就用了半小时不到
然后教大家怎么简单使用v8预测
1.新建一个
from ultralytics import YOLO
from PIL import Image
import cv2model = YOLO("yolov8n.pt")
# accepts all formats - image/dir/Path/URL/video/PIL/ndarray. 0 for webcam
# results = model.predict(source="0")
# results = model.predict(source="folder", show=True) # Display preds. Accepts all YOLO predict arguments# from PIL
im1 = Image.open("/Users/chen_dongdong/Downloads/ultralytics-main/test_detect/cat.png")
results = model.predict(source=im1, save=True) # save plotted images# from ndarray
# im2 = cv2.imread("bus.jpg")
# results = model.predict(source=im2, save=True, save_txt=True) # save predictions as labels# from list of PIL/ndarray
# results = model.predict(source=[im1, im2])
3行代码 解决
第一张什么都检测不出来,第二张就可以了,但是这个吧看大家选的图片了
谢幕 ,谢谢大家,其实有很多好玩的 大家可以看看去掉注释的代码玩一玩
相关文章:

yolo v8 教程(不出5行代码让你学会)
Solving environment: failedPackagesNotFoundError: The following packages are not available from current channels:- python3.8https://github.com/ultralytics 下滑来到 先来介绍为什么写这篇博客, 一. 是我之前的yolov5的博客挺多人访问的,但是…...
MongoDB集合结构分析工具Variety
工具下载地址:GitHub - variety/variety: Variety: a MongoDB Schema Analyzer 对于Mongo这种结构松散的数据库来说,如果想探查某个集合的结构,通过其本身提供的功能很不方便,通过调研发现一个很轻便的工具--variety,…...
详解Qt中访问数据库
在Qt中访问数据库涉及到几个关键步骤,主要包括加载数据库驱动、建立数据库连接、执行SQL语句、读取结果等。下面将详细介绍这些步骤,并给出一个简单的示例,这里假设使用的是SQLite数据库。 记得首先在pro文件中添加QT sql 1. 加载数据库驱动…...

《QT实用小工具·三》偏3D风格的异型窗体
1、概述 源码放在文章末尾 可以在窗体中点击鼠标左键进行图片切换,项目提供了一些图片素材,整体风格偏向于3D类型,也可以根据需求自己放置不同的图片。 下面是demo演示: 项目部分代码如下所示: 头文件部分ÿ…...

如何优化TCP?TCP的可靠传输机制是什么?
在网络世界中,传输层协议扮演着至关重要的角色,特别是TCP协议,以其可靠的数据传输特性而广受青睐。然而,随着网络的发展和数据量的激增,传统的TCP协议在效率方面遭遇了挑战。小编将深入分析TCP的可靠性传输机制&#x…...

DFS(基础,回溯,剪枝,记忆化)搜索
DFS基础 DFS(深度优先搜索) 基于递归求解问题,而针对搜索的过程 对于问题的介入状态叫初始状态,要求的状态叫目标状态 这里的搜索就是对实时产生的状态进行分析检测,直到得到一个目标状态或符合要求的最佳状态为止。对于实时产生新的状态…...

基于Scala开发Spark ML的ALS推荐模型实战
推荐系统,广泛应用到电商,营销行业。本文通过Scala,开发Spark ML的ALS算法训练推荐模型,用于电影评分预测推荐。 算法简介 ALS算法是Spark ML中实现协同过滤的矩阵分解方法。 ALS,即交替最小二乘法(Alte…...
Go语言和Java编程语言的主要区别
目录 1.设计理念: 2.语法: 3.性能: 4.并发性: 5.内存管理: 6.标准库: 7.社区和支持: 8.应用领域: Go(也称为Golang)和Java是两种不同的编程语言&…...
【TypeScript系列】与其它构建工具整合
与其它构建工具整合 构建工具 BabelBrowserifyDuoGruntGulpJspmWebpackMSBuildNuGet Babel 安装 npm install babel/cli babel/core babel/preset-typescript --save-dev.babelrc {"presets": ["babel/preset-typescript"] }使用命令行工具 ./node_…...

Java | Leetcode Java题解之第12题整数转罗马数字
题解: 题解: class Solution {String[] thousands {"", "M", "MM", "MMM"};String[] hundreds {"", "C", "CC", "CCC", "CD", "D", "DC…...

哈佛大学商业评论 --- 第五篇:智能眼镜之战
AR将全面融入公司发展战略! AR将成为人类和机器之间的新接口! AR将成为人类的关键技术之一! 请将此文转发给您的老板! --- 专题作者:Michael E.Porter和James E.Heppelmann 虽然物理世界是三维的,但大多…...

paddlepaddle模型转换onnx指导文档
一、检查本机cuda版本 1、右键找到invdia控制面板 2、找到系统信息 3、点开“组件”选项卡, 可以看到cuda版本,我们这里是cuda11.7 cuda驱动版本为516.94 二、安装paddlepaddle环境 1、获取pip安装命令 ,我们到paddlepaddle官网ÿ…...

图像处理与视觉感知---期末复习重点(6)
文章目录 一、图像分割二、间断检测2.1 概述2.2 点检测2.3 线检测2.4 边缘检测 三、边缘连接3.1 概述3.2 Hough变换3.3 例子3.4 Hough变换的具体步骤3.5 Hough变换的法线表示形式3.6 Hough变换的扩展 四、阈值处理4.1 概述4.2 计算基本全局阈值算法4.3 自适应阈值 五、基于区域…...
git 如何删除本地和远程分支
删除本地分支 确认当前分支:首先,确保你没有在要删除的分支上。你可以通过运行git branch命令来查看当前的分支。 切换分支:如果你在要删除的分支上,需要先切换到另一个分支。例如,切换到main分支,可以使用…...
Kong基于QPS、IP限流
Rate Limiting限流插件 https://docs.konghq.com/hub/kong-inc/rate-limiting/ 它可以针对consumer ,credential ,ip ,service,path,header 等多种维度来进行限流.流量控制的精准度也有多种方式可以参考,比如可以做到秒级,分钟级,小时级等限流控制. 基于IP限流 源码地址&…...

基于springboot实现甘肃非物质文化网站系统项目【项目源码+论文说明】
摘要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本甘肃非物质文化网站就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信…...

【瑞萨RA6M3】1. 基于 vscode 搭建开发环境
基于 vscode 搭建开发环境 1. 准备2. 安装2.1. 安装瑞萨软件包2.2. 安装编译器2.3. 安装 cmake2.4. 安装 openocd2.5. 安装 ninja2.6. 安装 make 3. 生成初始代码4. 修改 cmake 脚本5. 调试准备6. 仿真 1. 准备 需要瑞萨仓库中的两个软件: MDK_Device_Packs.zipse…...

使用pip install替代conda install将packet下载到anaconda虚拟环境
问题描述 使用conda install 下载 stable_baseline3出现问题 一番搜索下是Anaconda.org缺少源 解决方法 首先使用管理员权限打开 anaconda prompt 然后激活目标环境:conda activate env_name 接着使用:conda env list查看目标env的位置 如D:\anacon…...

【HTML】常用CSS属性
文章目录 前言1、字体和文本属性2、边距和填充3、border边框4、列表属性 前言 上一篇我们学习了CSS扩展选择器以及它的继承性,对于页面元素样式设置相信大家都不陌生了。 这一篇我们就来看看具体都有哪些样式可以设置?又该如何设置? 喜欢的【…...
python中的print(f‘‘)具体用法
在Python中,print(f) 是格式化字符串(f-string)的语法,它允许你在字符串中嵌入表达式,这些表达式在运行时会被其值所替换。f 或 F 前缀表示这是一个格式化字符串字面量。 在 f 或 F 中的大括号 {} 内,你可…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序
一、开发准备 环境搭建: 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 项目创建: File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

ESP32 I2S音频总线学习笔记(四): INMP441采集音频并实时播放
简介 前面两期文章我们介绍了I2S的读取和写入,一个是通过INMP441麦克风模块采集音频,一个是通过PCM5102A模块播放音频,那如果我们将两者结合起来,将麦克风采集到的音频通过PCM5102A播放,是不是就可以做一个扩音器了呢…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...

企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...

七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...

MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...