LangChain Demo | 如何调用stackoverflow并结合ReAct回答代码相关问题
背景
楼主决定提升与LLM交互的质量,之前是直接prompt->answer的范式,现在我希望能用上ReAct策略和能够检索StackOverflow,让同一款LLM发挥出更大的作用。
难点
1. 怎样调用StackOverflow
step1 pip install stackspi
step 2
from langchain.agents import load_toolstools = load_tools(["stackexchange"],llm=llm
)
注:stackoverflow是stackexchange的子网站
2. 交互次数太多token输入超出了llm限制
approach 1 使用ConversationSummaryBufferMemory
这种记忆方式会把之前的对话内容总结一下,限制在设定的token个数内
from langchain.memory import ConversationSummaryBufferMemorymemory = ConversationSummaryBufferMemory(llm = llm, # 这里的llm的作用是总结max_token_limit=4097,memory_key="chat_history"
)
approach 2 设置参数max_iterations
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, max_iterations=4, # 限制最大交互次数,防止token超过上限verbose=True
)
3. llm总是回复无法回答
很多教程把温度设置成0,说是为了得到最准确的答案,但是我发现这样设置,agent会变得特别谨慎,直接说它不知道,温度调高以后问题解决了。
测试问题
What parts does a JUnit4 unit test case consist of?
代码
from constants import PROXY_URL,KEYimport warnings
warnings.filterwarnings("ignore")import langchain
langchain.debug = Truefrom langchain.agents import load_tools
from langchain.chat_models import ChatOpenAIfrom langchain.agents import AgentExecutor, ZeroShotAgent
from langchain.chains import LLMChain
from langchain.memory import ConversationSummaryBufferMemoryllm = ChatOpenAI(temperature=0.7, # 如果参数调得很低,会导致LLM特别谨慎,最后不给答案model_name="gpt-3.5-turbo-0613", openai_api_key=KEY,openai_api_base=PROXY_URL
)memory = ConversationSummaryBufferMemory(llm = llm, # 这里的llm的作用是总结max_token_limit=4097,memory_key="chat_history"
)prefix = """You should be a proficient and helpful assistant in java unit testing with JUnit4 framework. You have access to the following tools:"""
suffix = """Begin!"{chat_history}
Question: {input}
{agent_scratchpad}"""tools = load_tools(["stackexchange"],llm=llm
)prompt = ZeroShotAgent.create_prompt(tools,prefix=prefix,suffix=suffix,input_variables=["input", "chat_history", "agent_scratchpad"],
) # 这里集成了ReActllm_chain = LLMChain(llm=llm, prompt=prompt)agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, max_iterations=4, # 限制最大交互次数,防止token超过上限verbose=True
)agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory
)def ask_agent(question):answer = agent_chain.run(input=question)return answerdef main():test_question = "What parts does a JUnit4 unit test case consist of?"test_answer = ask_agent(test_question)return test_answerif __name__ == "__main__":main()
最后输出
[chain/end] [1:chain:AgentExecutor] [75.12s] Exiting Chain run with output:
{
"output": "A JUnit4 unit test case consists of the following parts:\n1.
Test class: This is a class that contains the test methods.\n2. Test methods: These are the methods that contain the actual test code. They are annotated with the @Test annotation.\n3. Assertions: These are used to verify
the expected behavior of the code being tested. JUnit provides various assertion methods for this purpose.\n4. Annotations: JUnit provides several annotations that can be used to configure the test case, such as @Before, @After, @BeforeClass, and @AfterClass.\n\nOverall, a JUnit4 unit test case
is a class that contains test methods with assertions, and can be configured using annotations."
}
相关文章:

LangChain Demo | 如何调用stackoverflow并结合ReAct回答代码相关问题
背景 楼主决定提升与LLM交互的质量,之前是直接prompt->answer的范式,现在我希望能用上ReAct策略和能够检索StackOverflow,让同一款LLM发挥出更大的作用。 难点 1. 怎样调用StackOverflow step1 pip install stackspi step 2 from la…...

老子云、AMRT3D、眸瑞科技
老子云概述 老子云3D可视化快速开发平台,集云压缩、云烘焙、云存储云展示于一体,使3D模型资源自动输出至移动端PC端、Web端,能在多设备、全平台进行展示和交互,是全球领先、自主可控的自动化3D云引擎。 平台架构 平台特性 1、基…...

2023.4.7 机器学习周报
目录 引言 Abstract 文献阅读 1、题目 2、引言 3、过去方案和Motivation 4、Segment Anything模型 5、创新点 6、实验过程 7、实验结果 1、评价绩效 2、检测评价 3、跟踪评价 8、 结论 总结 引言 本周阅读了一篇关于高效的任意分割模型的文献,用于自…...

如何将平板或手机作为电脑的外接显示器?
先上官网链接:ExtensoDesk 家里有一台华为平板,自从买回来以后除了看视频外,基本没什么作用,于是想着将其作为我电脑的第二个屏幕,提高我学习办公的效率,废物再次利用。最近了解到华为和小米生态有多屏协同…...

Tuxera NTFS for Mac2023绿色免费版 免费的ntfs for mac 免费读写硬盘U盘工具
Tuxera NTFS 2023 Mac免费版是款适合Mac用户使用的磁盘读写工具。Tuxera NTFS 2023 Mac可以很好的帮助用户在Mac上打开、编辑、复制、移动或删除存储在Windows NTFS格式的USB驱动器上的文件。并且Tuxera NTFS 2023 Mac还可以无阻碍地使用各种文件系统磁盘,还能解决磁…...
使用阿里云试用Elasticsearch学习:3.6 处理人类语言——同义词
词干提取是通过简化他们的词根形式来扩大搜索的范围,同义词 通过相关的观念和概念来扩大搜索范围。 也许没有文档匹配查询 “英国女王“ ,但是包含 “英国君主” 的文档可能会被认为是很好的匹配。 用户搜索 “美国” 并且期望找到包含 美利坚合众国 、…...

018——红外遥控模块驱动开发(基于HS0038和I.MX6uLL)
目录 一、 模块介绍 1.1 简介 1.2 协议 二、 驱动代码 三、 应用代码 四、 实验 五、 程序优化 一、 模块介绍 1.1 简介 红外遥控被广泛应用于家用电器、工业控制和智能仪器系统中,像我们熟知的有电视机盒子遥控器、空调遥控器。红外遥控器系统分为发送端和…...

【学习心得】Python中的queue模块使用
一、Queue模块的知识点思维导图 二、Queue模块常用函数介绍 queue模块是内置的,不需要安装直接导入就可以了。 (1)创建一个Queue对象 import queue# 创建一个队列实例 q queue.Queue(maxsize20) # 可选参数,默认为无限大&am…...

ubuntu-server部署hive-part4-部署hive
参照 https://blog.csdn.net/qq_41946216/article/details/134345137 操作系统版本:ubuntu-server-22.04.3 虚拟机:virtualbox7.0 部署hive 下载上传 下载地址 http://archive.apache.org/dist/hive/ apache-hive-3.1.3-bin.tar.gz 以root用户上传至…...

贪心算法|135.分发糖果
力扣题目链接 class Solution { public:int candy(vector<int>& ratings) {vector<int> candyVec(ratings.size(), 1);// 从前向后for (int i 1; i < ratings.size(); i) {if (ratings[i] > ratings[i - 1]) candyVec[i] candyVec[i - 1] 1;}// 从后…...

c# wpf template itemtemplate+ListBox
1.概要 2.代码 <Window x:Class"WpfApp2.Window7"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schemas.microsoft.com/expression/blend/…...

关于JVM-三色标记算法剖析
相关系列 深入理解JVM垃圾收集器-CSDN博客 深入理解JVM垃圾收集算法-CSDN博客 深入理解jvm执行引擎-CSDN博客 jvm优化原则-CSDN博客 jvm流程图-CSDN博客 三色标记产生的原因? 在并发标记的过程中,因为标记期间应用线程还在继续跑,对象间的引…...

怎么看有没有装python
windows系统,运行——cmd,进入dos窗口,输入python,安装成功的话可以看到版本信息并进入编程模式。 如下图(我安装的版本是python 3.5.1):...
VS CODE环境安装和hello world
SAP UI5 demo walkthrough tutorial step1 hello word 首先要安装nodejs,然后才能执行下面的操作 nodejs vscode 安装ui5 npm install --global ui5/cli报错解决: idealTree:npm: sill idealTree buildDeps 这个信息说明npm正在构建,如一直停留在这个…...
mysql性能索引调优易混点总结
文章目录 一、 前言二、explain相关三、索引优化相关联合索引索引下推排序和分组相关优化分页优化表关联优化嵌套循环连接 Nested-Loop Join(NLJ) 算法in和exsits优化 一、 前言 近几年看了很多和mysql相关的书,文章或视频,但仍然有一些点,看…...

区块链与数字身份:探索Facebook的新尝试
在数字化时代,随着区块链技术的崛起,数字身份成为了一个备受关注的话题。作为全球最大的社交媒体平台之一,Facebook一直在探索如何利用区块链技术来改善数字身份管理和用户数据安全。本文将深入探讨Facebook在这一领域的新尝试,探…...

【pycharm】在debug循环时,如何快速debug到指定循环次数
【pycharm】在debug循环时,如何快速debug到指定循环次数 【先赞后看养成习惯】求关注收藏点赞😀 在 PyCharm 中,可以使用条件断点来实现在特定循环次数后停止调试。这可以通过在断点处右键单击,然后选择 “Add Breakpoint” -&g…...
【蓝桥杯每日一题】4.8 公约数
题目来源: 4199. 公约数 - AcWing题库 问题描述: 找到最大整数x,需满足下面两个条件 x x x是 a a a, b b b的公约数 l < x < r l<x<r l<x<r 思路: 找到 a a a, b b b两个数的最大公约数 g c g c d (…...

【MySQL学习】MySQL的慢查询日志和错误日志
꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ აxiaoxieʕ̯•͡˔•̯᷅ʔ—CSDN博客 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN …...
# C++之functional库用法整理
C之functional库用法整理 注:整理一些突然学到的C知识,随时mark一下 例如:忘记的关键字用法,新关键字,新数据结构 C 的function库用法整理 C之functional库用法整理一、functional库的内建仿函数1. 存储和调用函数2. 存…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
【HTML-16】深入理解HTML中的块元素与行内元素
HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

技术栈RabbitMq的介绍和使用
目录 1. 什么是消息队列?2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
TJCTF 2025
还以为是天津的。这个比较容易,虽然绕了点弯,可还是把CP AK了,不过我会的别人也会,还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)
目录 🔍 若用递归计算每一项,会发生什么? Horners Rule(霍纳法则) 第一步:我们从最原始的泰勒公式出发 第二步:从形式上重新观察展开式 🌟 第三步:引出霍纳法则&…...

结构化文件管理实战:实现目录自动创建与归类
手动操作容易因疲劳或疏忽导致命名错误、路径混乱等问题,进而引发后续程序异常。使用工具进行标准化操作,能有效降低出错概率。 需要快速整理大量文件的技术用户而言,这款工具提供了一种轻便高效的解决方案。程序体积仅有 156KB,…...