当前位置: 首页 > news >正文

蓝桥杯——求和

题目

给定 n 个整数 a1, a2,…·,an,求它们两两相乘再相加的和即:
S=a1·a2+a1·a3+··+a1·an+a2·a3+···+ a(n-2)*an+...+a(n-1)*an
输入格式
输入的第一行包含一个整数 n。
第二行包含 几 个整数 a1,a2,···,an。
输出格式
输出一个整数 S,表示所求的和。请使用合适的数据类型进行运算。

分析

我们首先可以进行公式化简,化简后发现是一个明显的前缀和问题。

代码

这里给出两个代码,第一个是暴力方法,比较简单,但会超时。

n=int(input())
num=[]
sums=0
for i in input().split():num.append(int(i))
for i in range(len(num)):for j in range(i+1,len(num)):sums+=num[i]*num[j]
print(sums)

第二个代码使用前缀和方法。

n=int(input())
num=[]
sums=0
for i in input().split():num.append(int(i))
a=[num[0]]+[0]*(n-1)
for i in range(1,n):a[i]=num[i]+a[i-1]
for i in range(n):sums+=num[i]*(a[n-1]-a[i])
print(sums)

相关文章:

蓝桥杯——求和

题目 给定 n 个整数 a1, a2,…,an,求它们两两相乘再相加的和即: Sa1a2a1a3a1ana2a3 a(n-2)*an...a(n-1)*an 输入格式 输入的第一行包含一个整数 n。 第二行包含 几 个整数 a1,a2,,an。 输出格式 输出一个整数 S,表示所…...

设计模式:责任链模式示例

责任链模式可以应用于多种场景,下面是几个不同场景的例子,每个例子都包括完整的代码。 示例1:日志处理系统 在日志处理系统中,日志消息可以根据其严重性(错误、警告、信息)被不同级别的日志处理器处理。 …...

SpringBoot快速入门笔记(4)

文章目录 一、Vue框架1、前端环境准备2、简介3、快速开始4、事件绑定 二、Vue组件化开发1、NPM2、Vue Cli3、组件化开发4、SayHello自定义组件5、Movie自定义组件 一、Vue框架 1、前端环境准备 编码工具:VSCode 依赖管理:NPM 项目构建:VueCl…...

GoPro相机使用的文件格式和频率

打开GoPro相机(以11为例),里面是一个DCIM文件夹。 DCIM是digital camera in memory 的简写,即存照片的文件夹,常见于数码相机、手机存储卡中的文件夹名字。 正常手机拍照和视频都是保存在此文件夹的。正常建议不用删,因为只要拍照…...

Redis Stack 安装部署

参考:Run Redis Stack on Docker | Redis Redis-stack 初体验_redis stack-CSDN博客 【docker】运行redis_docker run redis-stack-server requirepass-CSDN博客 Redis Stack 是一组软件套件,它主要由三部分组成。 一个是 Redis Stack Server&#x…...

【经典算法】LeetCode 5: 最长回文子串(Java/C/Python3实现含注释说明,Medium)

目录 题目描述思路及实现方式一:动态规划法思路代码实现Java版本C语言版本Python3版本 复杂度分析 方式二:中心扩展法思路代码实现Java版本C语言版本Python3版本 复杂度分析 总结相似题目 标签(题目类型):回文串、动态规划 题目描述 给定一…...

39.Python从入门到精通—parseString 方法 Python 解析XML实例 使用xml.dom解析xml

39.Python从入门到精通—parseString 方法 Python 解析XML实例 使用xml.dom解析xml parseString 方法Python 解析XML实例使用xml.dom解析xml parseString 方法 parseString 方法是 Python 标准库中 xml.dom.minidom 模块中的一个函数,用于解析 XML 字符串并构建 DO…...

【蓝桥杯第九场小白赛】(部分)

最近写的零零散散的&#xff0c;感觉这两天遇到的题对于短时间提升意义已经不大了&#xff0c;还是做简单题保持手感吧哎 盖印章 #include <iostream> using namespace std; using LLlong long; int main() {ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);LL n,m…...

【Linux】Supervisor 基础

要在Linux上启动Supervisor&#xff0c;你可以按照以下步骤进行操作&#xff1a; 确保你已经安装了Supervisor。使用适合你的Linux发行版的包管理器进行安装。例如&#xff0c;对于Ubuntu&#xff0c;可以运行以下命令安装Supervisor&#xff1a; sudo apt-get update sudo apt…...

48 全连接卷积神经网络 FCN【动手学深度学习v2】

全连接卷积神经网络&#xff1a;神经网络处理语义分割问题的奠基性工作&#xff0c;目前已不太常用。 了解一下全卷积网络模型最基本的设计。 如 下图所示&#xff0c;全卷积网络先使用卷积神经网络抽取图像特征&#xff0c;然后通过11卷积层将通道数变换为类别个数&#xff0…...

pytorch中的nn.MSELoss()均方误差损失函数

一、nn.MSELoss()是PyTorch中的一个损失函数&#xff0c;用于计算均方误差损失。 均方误差损失函数通常用于回归问题中&#xff0c;它的作用是计算目标值和模型预测值之间的平方差的平均值。 具体来说&#xff0c;nn.MSELoss()函数的输入是两个张量&#xff0c;即模型的真实值…...

三国游戏(贪心 排序)

三国游戏 利用贪心、排序、前缀和的计算方法&#xff0c;特别注意不要数据溢出了&#xff0c;sum 加long long s[i] x[i]-y[i]-z[i]输入: 3 1 2 2 2 3 2 1 0 7输出: 2#include <bits/stdc.h> using namespace std;const int N 1e5100;typedef long long ll;bool cm…...

GPU环境安装与虚拟环境安装(适用于Windows下的李沐GPU)

之前我是用的都是VMware的虚拟机且安装的是cpu的pytorch版本,因为想要使用GPU,最终实现了在Windows上使用GPU,并且相关原理也在参考文章或视频内,可以通过原理自行挑选自己所需的配置并安装。 文章目录 1.GPU安装1.1 名词解释1.2 卸载旧版本的CUDA1.3 版本选择步骤(Nivida显卡…...

Http Download

Http / Https 下载文件&#xff0c;startWith不能验证https&#xff0c;测试地址&#xff1a;https://storage.googleapis.com/golang/go1.7.3.windows-amd64.msi private static final Logger logger Logger.getLogger(MethodHandles.lookup().lookupClass());private static…...

【Android】Glide加载SVG,SVG转PNG

Dependency plugins {id kotlin-kapt }dependencies {api com.github.bumptech.glide:glide:4.12.0kapt com.github.bumptech.glide:compiler:4.12.0api com.caverock:androidsvg:1.4 }SvgDecoder 负责解码SVG资源 import com.bumptech.glide.load.Options import com.bumpte…...

Spring、SpringMVC、Springboot三者的区别和联系

1.背景 最近有人问面试的一个问题&#xff1a;Spring、SpringMVC、Springboot三者的区别和联系&#xff0c;个人觉得&#xff1a;万变不离其宗&#xff0c;只需要理解其原理&#xff0c;回答问题信手拈来。 2.三者区别和联系 2.1 先了解Spring基础 Spring 框架就像一个家族…...

一点点安全资料:网络安全扩展

协议扩展 加密协议SSL/TLS 简介 SSL&#xff08;Secure Sockets Layer&#xff09;和TLS&#xff08;Transport Layer Security&#xff09;是加密协议&#xff0c;设计用来提供网络通信的安全性和数据完整性。尽管TLS是SSL的后继者&#xff0c;但两者的核心目标相同&#x…...

vscode的源码插件GitHub Repositories

打铁还需自身硬&#xff0c;需要不断提升自我&#xff0c;提升自我的一种方式就是看源码&#xff0c;站在更高的维度去理解底层原理&#xff0c;以便以后更好的开发和解决问题&#xff0c;由于源码一个动不动就是几个G甚至十几个G&#xff0c;如果一个个源码下载下来&#xff0…...

如何定义快速开发平台框架?有何突出优势?

作为提质增效的利器软件&#xff0c;快速开发平台框架如何能在众多同行中取胜&#xff1f;又是凭借什么优势特点在激烈的市场竞争中获得众多客户的青睐与信任&#xff1f;不管是从企业角度、服务商角度&#xff0c;还是使用者的角度来说&#xff0c;做好流程化进程&#xff0c;…...

二分练习题——奶牛晒衣服

奶牛晒衣服 题目分析 这里出现了“弄干所有衣服的最小时间”&#xff0c;那么可以考虑用二分去做。 第一阶段二段性分析 假设当前需要耗费的时间为mid分钟&#xff0c;如果mid分钟内可以烘干这些衣服&#xff0c;那么我们可以确定右边界大于mid的区间一定也可以。但是此时我…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展&#xff0c;越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式&#xff0c;也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建&#xff0c;…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

Webpack性能优化:构建速度与体积优化策略

一、构建速度优化 1、​​升级Webpack和Node.js​​ ​​优化效果​​&#xff1a;Webpack 4比Webpack 3构建时间降低60%-98%。​​原因​​&#xff1a; V8引擎优化&#xff08;for of替代forEach、Map/Set替代Object&#xff09;。默认使用更快的md4哈希算法。AST直接从Loa…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

StarRocks 全面向量化执行引擎深度解析

StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计&#xff0c;相比传统行式处理引擎&#xff08;如MySQL&#xff09;&#xff0c;性能可提升 5-10倍。以下是分层拆解&#xff1a; 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...