当前位置: 首页 > news >正文

LangChain - OpenGPTs

在这里插入图片描述

文章目录

    • MessageGraph 消息图
    • 认知架构
      • Assistants
      • RAG
      • ChatBot
    • 持久化
    • 配置
    • 新模型
    • 新工具
    • `astream_events`
    • 总结


关键链接:

  • OpenGPT GitHub 存储库
  • YouTube 上的 OpenGPT 演练
  • LangGraph:PythonJS

两个多月前,在 OpenAI 开发日之后,我们推出了 OpenGPT:类似于开源 GPT 商店。
它由LangGraph的早期版本提供支持,LangGraph 是 LangChain 的扩展,旨在将代理构建为图表。
当时,我们并没有过多强调这个新软件包,因为我们还没有公开发布它并且仍在研究界面。
两周前,我们终于开始启动 LangGraph,并在上周末更新了 OpenGPT 以充分使用 LangGraph(并添加了一些新功能)。
我们认为现在是对 OpenGPT 及其驱动因素进行技术深入研究的最佳时机。


在这篇博客中,我们将讨论:

  • MessageGraph:OpenGPT 运行的一种特定类型的图
  • 认知架构:OpenGPT 支持的 3 种不同类型的认知架构是什么,以及它们有何不同
  • 持久性:如何通过 LangGraph 检查点在 OpenGPT 中实现持久性。
  • 配置:我们如何使用 LangChain 原语来配置所有这些不同的机器人。
  • 新模型:我们支持哪些新模型
  • 新工具:我们支持哪些新工具
  • astream_events:我们如何使用这种新方法来流式传输令牌和中间步骤

如果 YouTube 视频更符合您的风格,我们还制作了视频演练!


MessageGraph 消息图

OpenGPT 运行在 上MessageGraph,这是我们在 LangGraph 中引入的一种特殊类型的图。
该图的特殊之处在于 每个节点接收消息列表 并返回消息 以附加到消息列表。
我们认为这种“消息传递”很有趣,原因如下:

  • 它与新的“聊天完成”模型的 I/O 密切相关,该模型接收消息列表并返回消息
  • 消息传递是分布式系统中常用的通信方法
  • 它使正在完成的工作的可视化变得更容易,因为每个工作单元现在都是通用类型
  • 它与 OpenAI 引入的 Assistants API 密切相关(其中消息附加到线程)
  • 从概念上讲,它似乎可以扩展到多代理系统(其中每个代理只是将消息附加到消息列表中)

通过使用,MessageGraph我们对我们创建的代理的输入和输出做出假设,但值得注意的是,我们没有对这些代理的认知架构做出任何假设。
如下所示,这可以支持多种认知架构。


认知架构

作为 OpenGPT 更新的一部分,我们添加了三种不同的认知架构,以便用户在创建机器人时进行选择。

  • Assistants:可以配备任意数量的工具,并使用LLM 来决定何时使用它们
  • RAG:它们配备了一个猎犬,并且他们总是使用它。
  • ChatBot:这些只是通过自定义系统消息进行参数化。

Assistants

助理可以配备任意数量的工具,并使用LLM 来决定何时使用它们。
这使它们成为最灵活的选择,但它们适用于较少的模型,并且可靠性较差。

创建助手时,您需要指定一些内容。

首先,您选择要使用的语言模型。
只有少数语言模型可以可靠地使用:GPT-3.5、GPT-4、Claude 和 Gemini。

其次,您选择要使用的工具。
这些可以是预定义的工具或从上传的文件构建的检索器。您可以选择任意数量。

认知架构可以被认为是一个循环。
首先,LLM 被要求确定要采取什么(如果有)行动。如果它决定采取行动,那么这些行动就会被执行并循环回来。
如果决定不采取任何行动,则 LLM 的响应是最终响应,并且结束循环。

在这里插入图片描述


这可能是一个非常强大且灵活的架构。这可能最接近我们人类的运作方式。
然而,这些也可能不是超级可靠,并且通常只适用于性能更高的模型(即使如此,它们也可能会搞砸)。
因此,我们引入了一些更简单的架构。


RAG

GPT 存储的主要用例之一是 上传文件 并向机器人提供这些文件的知识。
让架构更加关注该用例意味着什么?

我们添加了一个 RAG 机器人 - 一个以检索为中心的 GPT,具有简单的架构。
首先,检索一组文档。
然后,这些文档在系统消息中传递给对语言模型的单独调用,以便它可以做出响应。

与助手相比,它更加结构化(但功能较弱)。
它总是会查找一些东西——如果你知道你想查找东西,这很好,但如果用户只是想进行正常的对话,这可能会造成浪费。
同样重要的是,这只会查找一次 - 因此,如果它找不到正确的结果,那么它将产生一个糟糕的结果(与助手相比,助手可能会决定再次查找内容)。

在这里插入图片描述


尽管这是一个更简单的架构,但它的优点有几个。
首先,因为它更简单,所以它可以很好地与更广泛的模型(包括许多开源模型)一起工作。
其次,如果您有一个不需要助手灵活性的用例(例如您知道用户每次都会查找信息),那么它可以更加集中。
第三,与下面的最终架构相比,它可以使用外部知识。


ChatBot

最终的架构非常简单——只需调用由系统消息参数化的语言模型。
这使得 GPT 能够呈现出不同的角色和性格。
这显然远不如助手或 RAGBot(可以访问外部数据/计算源)强大 - 但它仍然很有价值!
许多流行的 GPT 归根结底只是系统消息,而 CharacterAI 正在粉碎它,尽管很大程度上也只是系统消息。

在这里插入图片描述


持久化

从一开始,OpenGPT 的一个要求就是持久性,特别是聊天消息的持久性。
我们没有为此构建定制解决方案,而是决定为此添加功能作为 LangGraph 的一部分。
具体来说,在创建图形时,您可以传递 CheckPoint 对象。
该检查点对象将在调用每个节点后保存图的当前状态。

对于 OpenGPT,我们创建了一个 RedisCheckPointer,它将结果保存到 Redis。
目前,这种持久性仅用于显示过去对话的消息,但我们很快就会以更高级的方式使用这种持久性 🙂


配置

OpenGPT 的另一个要求是配置。
我们需要用户能够选择什么 LLM、什么系统消息、什么工具等。
我们还需要保存该配置,以便他们将来可以再次使用该聊天机器人。

LangChain 的一项不太突出的功能是 能够将某些字段 标记为可配置。
您可以对链的任何字段执行此操作,然后在运行时传入配置选项。

这使我们能够以模块化和一致的方式轻松实现可配置性。
首先,我们将不同的字段标记为可配置,然后为了支持不同的架构,我们甚至提供了整个链的可配置替代方案。
然后,当用户创建 GPT 时,我们将保存配置。
最后,当与该 GPT 聊天时,我们将使用保存的配置调用链。

查看 OpenGPT 源代码,了解如何执行此操作的一些高级示例,但请记住,它适用于所有 LangChain 对象!


新模型

作为本次更新的一部分,我们希望引入一些新模型。
首先,我们集成了Google的Gemini模型。该模型性能非常好并且支持函数调用,因此我们将其添加为助手的选项。

我们努力尝试获得一个足够可靠的开源模型来用作助手,但失败了。
即使有了 Mixtral,它仍然有点不可靠。
我们希望得到社区的帮助,让其可靠地工作!

由于无法使其适用于 Assistant 架构,我们添加了 Mixtral(通过Fireworks)作为 ChatBot 和 RAGBot 的选项。它与这些更简单的架构配合得很好!

我们还更新了 OpenAI 代理以使用工具调用而不是函数调用。


新工具

我们还推出了一个新工具 - Robocorp 的 Action Server。
Robocorp 的操作服务器是一种 将任意 Python 函数定义和运行作为工具的简单方法。
因此,即使这是一个单一的工具,也可以使用它来定义许多不同的工具!

请留意本周晚些时候对此进行更深入的探讨


astream_events

值得指出的是,我们正在使用新astream_events方法轻松流回所有事件(新令牌以及函数调用和函数结果)并将其呈现给用户。
我们对此流进行一些过滤以获取相关消息或消息块,然后在 UI 中很好地呈现它们。
如果您不熟悉astream_events,绝对值得在这里更详细地查看它。


总结

我们希望这能为 OpenGPT 提供更合适的技术深入探讨。
有几个领域可以从社区援助中受益:

  • 促使助理架构与开源模型可靠工作的策略
  • 支持其他工具(包括任意 OpenAPI 规范)

OpenGPT 背后的所有内容也通过 API 端点公开,因此请随意分叉并仅使用后端。

如果您是一家希望在内部部署 OpenGPT 的企业,请联系 gtm@langchain.dev。


伊织 2024-04-07(日)

相关文章:

LangChain - OpenGPTs

文章目录 MessageGraph 消息图认知架构AssistantsRAGChatBot 持久化配置新模型新工具astream_events总结 关键链接: OpenGPT GitHub 存储库YouTube 上的 OpenGPT 演练LangGraph:Python、JS 两个多月前,在 OpenAI 开发日之后,我们…...

pe格式从入门到图形化显示(四)-节表

文章目录 前言一、什么是Windows PE格式节表?二、解析节表并显示1.节表数据结构以及字段描述2.节表的属性3.解析4.显示 前言 通过分析和解析Windows PE格式,并使用qt进行图形化显示 一、什么是Windows PE格式节表? PE格式的节表&#xff08…...

路由策略与路由控制之双点双向重发布(OSPF-ISIS)实验

双点双向重发布在路由协议中,特别是在OSPF(开放式最短路径优先)与IS-IS(中间系统到中间系统)等协议之间,指的是在两个协议间或者两个进程间进行路由信息共享的机制。这种机制涉及到在两个不同的协议区域使用…...

9proxy—数据采集工具全面测评

9Proxy数据采集工具Unlock the web with 9Proxy, the top residential proxy provider. Get unlimited bandwidth, affordable prices, and secure HTTPS and Socks5 configurations.https://9proxy.com/?utm_sourceblog&utm_mediumcsdn&utm_campaignyan 前言 在当今数…...

上海晶珩树莓派工业智能机械臂,亮相2024年embedded world博览会!

上海晶珩树莓派工业智能机械臂,亮相2024年embedded world博览会! 工业智能机械臂是上海晶珩(EDATEC)团队基于树莓派工业相机ED-AIC2000和树莓派工业触摸屏ED-HMI2320开发的创新应用案例。 工业智能机械臂具备卓越的定位能力&…...

蓝桥杯——求和

题目 给定 n 个整数 a1, a2,…,an,求它们两两相乘再相加的和即: Sa1a2a1a3a1ana2a3 a(n-2)*an...a(n-1)*an 输入格式 输入的第一行包含一个整数 n。 第二行包含 几 个整数 a1,a2,,an。 输出格式 输出一个整数 S,表示所…...

设计模式:责任链模式示例

责任链模式可以应用于多种场景,下面是几个不同场景的例子,每个例子都包括完整的代码。 示例1:日志处理系统 在日志处理系统中,日志消息可以根据其严重性(错误、警告、信息)被不同级别的日志处理器处理。 …...

SpringBoot快速入门笔记(4)

文章目录 一、Vue框架1、前端环境准备2、简介3、快速开始4、事件绑定 二、Vue组件化开发1、NPM2、Vue Cli3、组件化开发4、SayHello自定义组件5、Movie自定义组件 一、Vue框架 1、前端环境准备 编码工具:VSCode 依赖管理:NPM 项目构建:VueCl…...

GoPro相机使用的文件格式和频率

打开GoPro相机(以11为例),里面是一个DCIM文件夹。 DCIM是digital camera in memory 的简写,即存照片的文件夹,常见于数码相机、手机存储卡中的文件夹名字。 正常手机拍照和视频都是保存在此文件夹的。正常建议不用删,因为只要拍照…...

Redis Stack 安装部署

参考:Run Redis Stack on Docker | Redis Redis-stack 初体验_redis stack-CSDN博客 【docker】运行redis_docker run redis-stack-server requirepass-CSDN博客 Redis Stack 是一组软件套件,它主要由三部分组成。 一个是 Redis Stack Server&#x…...

【经典算法】LeetCode 5: 最长回文子串(Java/C/Python3实现含注释说明,Medium)

目录 题目描述思路及实现方式一:动态规划法思路代码实现Java版本C语言版本Python3版本 复杂度分析 方式二:中心扩展法思路代码实现Java版本C语言版本Python3版本 复杂度分析 总结相似题目 标签(题目类型):回文串、动态规划 题目描述 给定一…...

39.Python从入门到精通—parseString 方法 Python 解析XML实例 使用xml.dom解析xml

39.Python从入门到精通—parseString 方法 Python 解析XML实例 使用xml.dom解析xml parseString 方法Python 解析XML实例使用xml.dom解析xml parseString 方法 parseString 方法是 Python 标准库中 xml.dom.minidom 模块中的一个函数,用于解析 XML 字符串并构建 DO…...

【蓝桥杯第九场小白赛】(部分)

最近写的零零散散的&#xff0c;感觉这两天遇到的题对于短时间提升意义已经不大了&#xff0c;还是做简单题保持手感吧哎 盖印章 #include <iostream> using namespace std; using LLlong long; int main() {ios::sync_with_stdio(false);cin.tie(0),cout.tie(0);LL n,m…...

【Linux】Supervisor 基础

要在Linux上启动Supervisor&#xff0c;你可以按照以下步骤进行操作&#xff1a; 确保你已经安装了Supervisor。使用适合你的Linux发行版的包管理器进行安装。例如&#xff0c;对于Ubuntu&#xff0c;可以运行以下命令安装Supervisor&#xff1a; sudo apt-get update sudo apt…...

48 全连接卷积神经网络 FCN【动手学深度学习v2】

全连接卷积神经网络&#xff1a;神经网络处理语义分割问题的奠基性工作&#xff0c;目前已不太常用。 了解一下全卷积网络模型最基本的设计。 如 下图所示&#xff0c;全卷积网络先使用卷积神经网络抽取图像特征&#xff0c;然后通过11卷积层将通道数变换为类别个数&#xff0…...

pytorch中的nn.MSELoss()均方误差损失函数

一、nn.MSELoss()是PyTorch中的一个损失函数&#xff0c;用于计算均方误差损失。 均方误差损失函数通常用于回归问题中&#xff0c;它的作用是计算目标值和模型预测值之间的平方差的平均值。 具体来说&#xff0c;nn.MSELoss()函数的输入是两个张量&#xff0c;即模型的真实值…...

三国游戏(贪心 排序)

三国游戏 利用贪心、排序、前缀和的计算方法&#xff0c;特别注意不要数据溢出了&#xff0c;sum 加long long s[i] x[i]-y[i]-z[i]输入: 3 1 2 2 2 3 2 1 0 7输出: 2#include <bits/stdc.h> using namespace std;const int N 1e5100;typedef long long ll;bool cm…...

GPU环境安装与虚拟环境安装(适用于Windows下的李沐GPU)

之前我是用的都是VMware的虚拟机且安装的是cpu的pytorch版本,因为想要使用GPU,最终实现了在Windows上使用GPU,并且相关原理也在参考文章或视频内,可以通过原理自行挑选自己所需的配置并安装。 文章目录 1.GPU安装1.1 名词解释1.2 卸载旧版本的CUDA1.3 版本选择步骤(Nivida显卡…...

Http Download

Http / Https 下载文件&#xff0c;startWith不能验证https&#xff0c;测试地址&#xff1a;https://storage.googleapis.com/golang/go1.7.3.windows-amd64.msi private static final Logger logger Logger.getLogger(MethodHandles.lookup().lookupClass());private static…...

【Android】Glide加载SVG,SVG转PNG

Dependency plugins {id kotlin-kapt }dependencies {api com.github.bumptech.glide:glide:4.12.0kapt com.github.bumptech.glide:compiler:4.12.0api com.caverock:androidsvg:1.4 }SvgDecoder 负责解码SVG资源 import com.bumptech.glide.load.Options import com.bumpte…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

【算法训练营Day07】字符串part1

文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接&#xff1a;344. 反转字符串 双指针法&#xff0c;两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

DingDing机器人群消息推送

文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人&#xff0c;点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置&#xff0c;详见说明文档 成功后&#xff0c;记录Webhook 2 API文档说明 点击设置说明 查看自…...