当前位置: 首页 > news >正文

torch.mean()的使用方法

对一个三维数组的每一维度进行操作

1,dim=0

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 0) 
print(mean, mean.shape)

输出结果:

tensor([[[0., 1.],

             [2., 3.]],

             [[4., 5.],

              [6., 7.]]])

tensor([[2., 3.],

            [4., 5.]]) torch.Size([2, 2])

2,dim=1

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 1) 
print(mean, mean.shape)

输出结果

tensor(

[[[0., 1.],

[2., 3.]],

[[4., 5.],

[6., 7.]]])

tensor(

[[1., 2.],

[5., 6.]]) torch.Size([2, 2])

3,dim=2

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 2) 
print(mean, mean.shape)

输出结果

tensor(

[[[0., 1.],

[2., 3.]],

[[4., 5.],

[6., 7.]]])

tensor(

[[0.5000, 2.5000],

[4.5000, 6.5000]]) torch.Size([2, 2])

补充,如果在函数中添加了True,表示要和原来数的维度一致,不够的用维度1来添加,如下


a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) 
print(a) 
mean = torch.mean(a, 2, True) 
print(mean, mean.shape)
tensor([[[0., 1.],[2., 3.]],[[4., 5.],[6., 7.]]])
tensor([[[0.5000],[2.5000]],[[4.5000],[6.5000]]]) torch.Size([2, 2, 1])

补充多维度变化


a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 0, True) 
print(mean, mean.shape)
tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 4.,  5.],[ 6.,  7.]],[[ 8.,  9.],[10., 11.]]]]) torch.Size([1, 2, 2, 2])

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 1, True) 
print(mean, mean.shape)
tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 2.,  3.],[ 4.,  5.]]],[[[10., 11.],[12., 13.]]]]) torch.Size([2, 1, 2, 2])
a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 2, True) 
print(mean, mean.shape)tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 1.,  2.]],[[ 5.,  6.]]],[[[ 9., 10.]],[[13., 14.]]]]) torch.Size([2, 2, 1, 2])

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2) 
print(a) 
mean = torch.mean(a, 3, True) 
print(mean, mean.shape)
tensor([[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]])
tensor([[[[ 0.5000],[ 2.5000]],[[ 4.5000],[ 6.5000]]],[[[ 8.5000],[10.5000]],[[12.5000],[14.5000]]]]) torch.Size([2, 2, 2, 1])

a = torch.Tensor([0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15,0, 1, 2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15]).view(2, 2, 2,2,2) 
print(a) 
mean = torch.mean(a, 3, True) 
print(mean, mean.shape)
tensor([[[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]],[[[[ 0.,  1.],[ 2.,  3.]],[[ 4.,  5.],[ 6.,  7.]]],[[[ 8.,  9.],[10., 11.]],[[12., 13.],[14., 15.]]]]])
tensor([[[[[ 1.,  2.]],[[ 5.,  6.]]],[[[ 9., 10.]],[[13., 14.]]]],[[[[ 1.,  2.]],[[ 5.,  6.]]],[[[ 9., 10.]],[[13., 14.]]]]]) torch.Size([2, 2, 2, 1, 2])

相关文章:

torch.mean()的使用方法

对一个三维数组的每一维度进行操作 1,dim0 a torch.Tensor([0, 1, 2, 3, 4, 5,6,7]).view(2, 2, 2) print(a) mean torch.mean(a, 0) print(mean, mean.shape) 输出结果: tensor([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) tensor([[2., …...

windows安装Redis,Mongo,ES并快速基本掌握开发流程

前言 这里只是一些安装后的基础操作,后期会学习更加深入的操作 基础操作 前言RedisRedis启动idea集成Redisjedis技术 Mongodbwindows版Mongodb的安装idea整合Mongodb ES(Elasticsearch)ESwindows下载ES文档操作idea整合ES低级别ES整合高级别ES整合 Redis Redis是…...

ruoyi-nbcio-plus基于vue3的flowable的自定义业务提交申请组件的升级修改

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 http://122.227.135.243:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a…...

掌握网络抓取技术:利用RobotRules库的Perl下载器一览小红书的世界

引言 在信息时代的浪潮下,人们对于获取和分析海量网络数据的需求与日俱增。网络抓取技术作为满足这一需求的关键工具,正在成为越来越多开发者的首选。而Perl语言,以其卓越的文本处理能力和灵活的特性,脱颖而出,成为了…...

典型新能源汽车热管理系统方案分析

目前行业具有代表性的热管理系统有PTC电加热方案、热泵方案(特斯拉八通阀热泵、吉利直接式热泵)、威马的柴油加热方案以及以理想为代表的插电式混动车方案。 小鹏P7整车热管理方案分析(PTC电加热方案) 小鹏P7作为小鹏汽车的第2款…...

使用Docker部署开源项目FreeGPT35来免费调用ChatGPT3.5 API

Vercel部署FreeGPT35有严重限制,玩玩就好,真用还是得docker。 限制原因: Vercel的流式响应并不是一开始写流,客户端就能立刻收到响应流,而是先写到一个缓冲区,当流关闭才一股脑的流式响应回来(不是实时流) 因此导致: …...

《Linux运维实战:Kylin V10操作系统开启安装软件保留缓存设置》

总结:整理不易,如果对你有帮助,可否点赞关注一下? 更多详细内容请参考:Linux运维实战总结 一、操作步骤 1、改系统/etc/yum.conf配置文件,开启安装软件保留缓存设置 [rootecs-90c2-0003 ~]# vim /etc/yum.…...

视频生成技术:从GAN到Latte

GANs Diffusion Model...

机器学习中的激活函数

激活函数存在的意义: 激活函数决定了某个神经元是否被激活,当这个神经元接收到的信息是有用或无用的时候,激活函数决定了对这个神经元接收到的信息是留下还是抛弃。如果不加激活函数,神经元仅仅做线性变换,那么该神经网…...

LinuxAndroid: 旋转编码器input输入事件适配(旋转输入)

rk3588s: 旋转编码器input输入事件适配 基于Android 12 kernel-5.10版本 参考文档: https://blog.csdn.net/szembed/article/details/131551950 Linux 输入设备调试详解(零基础开发)Rotary_Encoder旋转编码器驱动 通用GPIO为例 挂载input输…...

机器学习和深度学习-- 李宏毅(笔记与个人理解)Day10

Day 10 Genaral GUidance training Loss 不够的case Loss on Testing data over fitting 为什么over fitting 留到下下周哦~~ 期待 solve CNN卷积神经网络 Bias-Conplexiy Trade off cross Validation how to split? N-fold Cross Validation mismatch 这节课总体听下来比较…...

perl 交叉编译

前言 Perl是一种高级、通用、解释型、动态的编程语言。Perl设计的初衷是为了更好地处理文本处理任务,但随着时间的发展,现在它已经变成了一种强大的一般目的编程语言。Perl支持面向过程和面向对象的编程风格。 Perl的特点: 强大的字符串处…...

浅谈.版本管理工具

定义: 版本控制是一种在开发的过程中用于管理我们对文件、目录或工程等内容的修改历史,方便查看更改历史记录,备份以便恢复以前的版本的软件工程技术。 特点: 1、方便用于管理多人协同开发项目 2、并行开发,可实现跨区…...

【汇编语言实战】已知10个整数求最大值

C语言描述该程序流程&#xff1a; #include <stdio.h> int main() {int a[]{11,33,23,54,12,51,2,4,34,45};int maxa[0];for(int i1;i<9;i){if(a[i]>max){maxa[i];}}printf("%d",max); }汇编语言&#xff1a; include irvine32.inc .data arr dword 11…...

在 CentOS 7 上安装 Redis

在 CentOS 7 上安装 Redis 可以通过几个简单的步骤完成。以下是一种常用的方法&#xff1a; 更新系统&#xff1a; 在安装任何新软件之前&#xff0c;最好先更新系统的软件包列表&#xff0c;以确保安装的软件版本是最新的。可以使用以下命令来更新&#xff1a; sudo yum up…...

『51单片机』蜂鸣器

&#x1f6a9; WRITE IN FRONT &#x1f6a9; &#x1f50e; 介绍&#xff1a;"謓泽"正在路上朝着"攻城狮"方向"前进四" &#x1f50e;&#x1f3c5; 荣誉&#xff1a;2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2222年获评…...

计算机视觉 | 基于二值图像数字矩阵的距离变换算法

Hi&#xff0c;大家好&#xff0c;我是半亩花海。本实验基于 OpenCV 实现了二值图像数字矩阵的距离变换算法。首先生成一个 480x480 的黑色背景图像&#xff08;定义黑色为0&#xff0c;白色为1&#xff09;&#xff0c;在其中随机选择了三个白色像素点作为距离变换的原点&…...

Arcgis windows webadaptor配置

注意windows下安装细节 1、电脑必须添加限定域名及dns后缀。 准备工作 a、安装webadaptor&#xff0c;获取jar文件 b、tomcat中部署两个jar&#xff0c;名字不相同&#xff0c;一个用server配置&#xff0c;一个用于portal配置 c、geoserver用来配置server d、geoscene用来配置…...

对接阿里云实时语音转文字的思路

将上述概念转化为详细代码需要一定的步骤。这里&#xff0c;我们将根据之前讨论的服务划分&#xff0c;创建一个简化的框架来模拟这个流程。注意&#xff0c;由于空间限制和简化目的&#xff0c;某些实现细节会被省略或简化&#xff0c;你可能需要根据实际情况进行调整。 1. 配…...

如何转行成为产品经理?

转行NPDP也是很合适的一条发展路径&#xff0c;之后从事新产品开发相关工作~ 一、什么是NPDP&#xff1f; NPDP 是产品经理国际资格认证&#xff0c;美国产品开发与管理协会&#xff08;PDMA&#xff09;发起的&#xff0c;是目前国际公认的唯一的新产品开发专业认证&#xff…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

如何在Windows本机安装Python并确保与Python.NET兼容

✅作者简介&#xff1a;2022年博客新星 第八。热爱国学的Java后端开发者&#xff0c;修心和技术同步精进。 &#x1f34e;个人主页&#xff1a;Java Fans的博客 &#x1f34a;个人信条&#xff1a;不迁怒&#xff0c;不贰过。小知识&#xff0c;大智慧。 &#x1f49e;当前专栏…...