当前位置: 首页 > news >正文

[python] Numpy库用法(持续更新)

先导入一下

import numpy as np
一、np.random用法
  1. 生成随机整数:np.random.randint(low, high, size)

    • low: 最小值
    • high: 最大值
    • size: 生成的数组大小(可以是多维,下面同理)
  2. 生成随机浮点数:np.random.uniform(low, high, size)

    • low: 最小值
    • high: 最大值
    • size: 生成的数组大小

在NumPy中,np.random.uniform这个函数的名称中的"uniform"指的是均匀分布(Uniform Distribution)。这种分布中,所有数值在一定范围内出现的概率是均等的,也就是说,这个范围内的任何一个数被选中的机会都是一样的。这和其他一些分布不同,比如正态分布,其中某些数值出现的机率比其他数值高。

具体来说,当你使用np.random.uniform(low, high, size)时:

  • lowhigh参数定义了数值的范围,其中low是下限(包含),high是上限(不包含)。
  • size参数决定了生成多少个这样的随机数。

举个例子,如果你调用np.random.uniform(1, 5, 3),NumPy将会生成一个数组,包含3个在1(包含)到5(不包含)之间均匀分布的随机浮点数。

因此,这个函数被命名为"uniform",正是因为它生成的是遵循均匀分布规律的随机数。

  1. 生成服从正态分布的随机数:np.random.normal(loc, scale, size)

    • loc: 均值
    • scale: 标准差
    • size: 生成的数组大小
  2. 生成一个随机排列:np.random.permutation(x)

    • x: 输入的数组或整数
  3. 生成一个随机样本:np.random.sample(size)

    • size: 生成的数组大小
  4. 生成一个随机种子:np.random.seed(seed)

    • seed: 种子值
  5. 生成一个符合指定概率分布的随机数:np.random.choice(a, size, replace, p)

    • a: 输入的数组
    • size: 生成的数组大小
    • replace: 是否可以重复抽样
    • p: 每个元素被抽样的概率
  6. 生成一个随机数组成的矩阵:np.random.rand(d0, d1, ..., dn)

    • d0, d1, ..., dn: 矩阵的维度
  7. 生成一个随机整数矩阵:np.random.randint(low, high, size)

    • low: 最小值
    • high: 最大值
    • size: 生成的矩阵大 小
import numpy as np# 生成一个随机整数
random_int = np.random.randint(1, 10, 5)
print(random_int)# 生成一个随机浮点数
random_float = np.random.uniform(1.0, 5.0, 5)
print(random_float)# 生成一个服从正态分布的随机数
random_normal = np.random.normal(0, 1, 5)
print(random_normal)# 生成一个随机排列
random_permutation = np.random.permutation([1, 2, 3, 4, 5])
print(random_permutation)# 生成一个随机样本
random_sample = np.random.sample(5)
print(random_sample)# 生成一个随机种子
np.random.seed(0)
random_seed = np.random.rand(3)
print(random_seed)# 生成一个符合指定概率分布的随机数
random_choice = np.random.choice([1, 2, 3, 4, 5], 3, replace=False, p=[0.1, 0.2, 0.3, 0.2, 0.2])
print(random_choice)# 生成一个随机矩阵
random_matrix = np.random.rand(2, 3)
print(random_matrix)# 生成一个随机整数矩阵
random_int_matrix = np.random.randint(1, 10, (2, 3))
print(random_int_matrix)# 生成一个服从均匀分布的随机数
random_uniform = np.random.rand(2, 3)
print(random_uniform)

输出结果

[9 6 4 8 5]
[1.87678294 4.17125097 4.34816045 4.56395443 1.99147984]
[-0.27015379 -1.82642694  0.96417976  1.38643896  0.23534789]
[5 1 3 2 4]
[0.73823778 0.70459439 0.67601929 0.45422436 0.67000757]
[0.5488135  0.71518937 0.60276338]
[3 4 2]
[[0.891773   0.96366276 0.38344152][0.79172504 0.52889492 0.56804456]]
[[6 9 5][4 1 4]]
[[0.95715516 0.14035078 0.87008726][0.47360805 0.80091075 0.52047748]]
二.一些数据处理函数

 

 

 

np.load

  • 用途:这个函数用于加载存储在.npy文件中的NumPy数组。这是一种高效存储和读取NumPy数组数据的方式,特别适用于持久化大型数组。

np.astype

  • 用途astype方法允许你复制数组并将其元素转换为一个指定的类型。这在数据处理中非常常见,比如将整数数组转换为浮点数数组,或者将浮点数数组转换为整数数组。类型转换是数据预处理的一个重要步骤。

np.shape 和 .shape

  • 用途:这些用法提供了一种获取NumPy数组维度的方法。np.shape是一个函数,而.shape是数组对象的一个属性。了解数组的形状对于进行数组操作(如重塑或切片)是非常重要的。

np.reshape

  • 用途reshape方法允许在不更改数组数据的前提下,给数组一个新的形状。这在将数据准备为特定格式进行机器学习模型训练时尤其有用。

np.std

  • 用途:这个函数计算沿指定轴的标准差,是度量数据分散程度的一个重要统计量。在数据分析和科学研究中,标准差用于衡量数值的波动程度。

np.mean

  • 用途mean函数计算沿指定轴的平均值。平均值是最常用的统计量之一,用于描述数据集中趋势的中心位置。

np.max

  • 用途:这个函数计算沿指定轴的最大值。在数据分析中,了解数据的范围(最大值和最小值)对于评估数据的分布和极值非常重要。

np.arange

  • 用途arange函数返回一个有等差数列构成的数组。这个函数非常适用于生成序列数据,例如生成连续的时间点序列。它是Python内置range函数的NumPy版本,但可以生成浮点序列并具有更多的灵活性。

val_X.reshape(val_X.shape[0], -1)的操作并不是将数组重塑为一维数组,而是重塑为二维数组,其中第一维度保持不变,第二维度自动计算以包含剩余的所有元素。

具体来说:

  • val_X.shape[0]:这是val_X数组的第一个维度的大小,即行数。
  • -1:这个参数告诉NumPy自动计算第二个维度的大小,以便保持所有数据元素的总数不变。

例如,如果val_X原来的形状是(100, 2, 3),这表示有100个2x3的矩阵。执行val_X.reshape(val_X.shape[0], -1)后,形状将变为(100, 6),这意味着每个原始的2x3矩阵现在被展平成一个包含6个元素的一维数组,但在更大框架下,它们作为100行的二维数组存在。

因此,reshape操作并没有创建一个真正的一维数组,而是创建了一个二维数组,其第一维保持为原数组的行数,第二维展平了原有的每个子矩阵。

 

假设我们有一个数组test_Y,它表示某种测试数据的标签,如下所示:

test_Y = np.array([1, 2, 1, 3, 2, 1, 3])

我们想要找出所有标签等于1的数据的索引。在这个例子中,y的值设为1

  1. 首先,np.arange(num_data)生成一个从0开始的等差数列。假设num_data等于test_Y的长度,即7,那么生成的数组就是[0, 1, 2, 3, 4, 5, 6]

  2. 接下来,test_Y == 1生成一个布尔数组,表示test_Y中每个位置的值是否等于1。对于我们的test_Y,结果是:

    [True, False, True, False, False, True, False]

    这意味着在位置0、2和5的值等于1

  3. 最后,通过使用上一步生成的布尔数组作为索引,我们从步骤1生成的等差数列中选择索引。因此,np.arange(num_data)[test_Y == 1]的结果将是:

    [0, 2, 5]

    这个结果告诉我们,在test_Y数组中,值等于1的元素位于原数组的第0、第2和第5个位置。

总结一下,这行代码的作用是找出test_Y中所有等于y值的元素的索引,并以数组的形式返回这些索引。这种技巧在处理分类问题时特别有用,例如,当你需要根据分类结果选择或操作数据的子集时。

相关文章:

[python] Numpy库用法(持续更新)

先导入一下 import numpy as np 一、np.random用法 生成随机整数:np.random.randint(low, high, size) low: 最小值high: 最大值size: 生成的数组大小(可以是多维,下面同理) 生成随机浮点数:np.random.uniform(low, …...

vue快速入门(十七)v-model数据双向绑定修饰符

注释很详细&#xff0c;直接上代码 上一篇 新增内容 v-model.trim 自动去除首尾空格v-model.number 自动转换成数字类型 源码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" con…...

2024-2025年申报各类科研项目基金撰写及技巧

随着社会经济发展和科技进步&#xff0c;基金项目对创新性的要求越来越高。申请人需要提出独特且有前瞻性的研究问题&#xff0c;具备突破性的科学思路和方法。因此&#xff0c;基金项目申请往往需要进行跨学科的技术融合。申请人需要与不同领域结合&#xff0c;形成多学科交叉…...

Python基于Django的微博热搜、微博舆论可视化系统,附源码

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;…...

【Linux学习】初识Linux指令(一)

文章目录 1.指令操作与图形化界面操作1.什么是指令操作&#xff0c;什么是图形化界面操作&#xff1f; 2.Linux下基本指令1.Linux下的复制粘贴2.Linux两个who命令3.补充知识4.pwd指令5. ls 指令6.cd 指令1.目录树2.相对路径与绝对路劲3.常用cd指令 7.tree指令8. touch指令9.sta…...

基于Python实现盈利8371%的交易策略

本文介绍了通过Python和Benzinga API构建自动化交易策略的方法&#xff0c;帮助交易者方便的回测交易策略。原文: An Algo Trading Strategy which made 8,371%: A Python Case Study Behnam Norouzi Unsplash 导言 传统自动化交易策略(如均线交叉或 RSI 临界点突破策略)已被证…...

如何在Linux中找到正在运行的Java应用的JAR文件

当你在Linux服务器上工作时&#xff0c;可能需要找到某个正在运行的Java应用的JAR文件位置。这对于诊断问题、更新应用或理解部署结构非常有用。以下是一个步骤详细的指南&#xff0c;帮助你找到这些信息。 1. 确定Java进程 首先&#xff0c;你需要确定正在运行的Java应用的进…...

几分钟学会TypeScript

目录 一、类型推断和类型注解二.类型注解&#xff0c;声明时指定类型三、类型断言四、基础类型和联合类型字符串数字和浮点类型布尔空和undefined多类型值限定 五、数组 元组 枚举数组元组,?代表可选参数枚举枚举使用 六、函数函数作为参数 七、类、接口与抽象类类访问修饰符类…...

最新版手机软件App下载排行网站源码/App应用商店源码

内容目录 一、详细介绍二、效果展示1.部分代码2.效果图展示 三、学习资料下载 一、详细介绍 一款简洁蓝色的手机软件应用app下载排行&#xff0c;app下载平台&#xff0c;最新手机app发布网站响应式织梦模板。 主要有&#xff1a;主页、app列表页、app介绍详情页、新闻资讯列…...

R语言计算:t分布及t检验

t分布理论基础 t分布也称Student’s t-distribution&#xff0c;主要出现在小样本统计推断中&#xff0c;特别是当样本量较小且总体标准差未知时&#xff0c;用于估计正态分布的均值。其定义基于正态分布和 X 2 X^{2} X2分布&#xff08;卡方分布&#xff09;。如果随机变量X服…...

uni-app的地图定位与距离测算功能的实现

文章目录 一、引言二、uni-app地图定位实现三、距离测算技术四、完整代码五、结论本文着重探讨了如何在uni-app中实现地图定位,以及如何计算当前定位与目标位置之间的距离。 一、引言 在移动应用开发中,地图定位与距离测算是常见的功能需求。无论是出行导航、位置签到,还是…...

如何从应用商店Microsoft Store免费下载安装HEVC视频扩展插件

在电脑上打开一张HEIC类型的图片提示缺少HEVC解码器&#xff0c;无法打开查看&#xff0c;现象如下&#xff1a; 这种情况一般会提示我们需要下载安装HEVC解码器&#xff0c;点击“立即下载并安装”会跳转到应用商店&#xff0c;但是我们发现需要付费7元才能下载安装 免费安装…...

【vue】v-if 条件渲染

v-if 不适用于频繁切换显示模式的场景 修改web.user&#xff0c;可看到条件渲染的效果 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initi…...

Day37:LeedCode 738.单调递增的数字 968.监控二叉树 蓝桥杯 翻转

738. 单调递增的数字 当且仅当每个相邻位数上的数字 x 和 y 满足 x < y 时&#xff0c;我们称这个整数是单调递增的。 给定一个整数 n &#xff0c;返回 小于或等于 n 的最大数字&#xff0c;且数字呈 单调递增 。 示例 1: 输入: n 10 输出: 9 思路: 假设这个数是98,…...

详解Qt元对象系统

Qt库作为一款流行的跨平台C应用程序开发框架&#xff0c;其中的元对象系统是其核心特性之一。Qt元对象系统不仅提供了诸如信号槽&#xff08;Signals & Slots&#xff09;、属性系统&#xff08;Property System&#xff09;等功能&#xff0c;还实现了对C对象的运行时类型…...

无法用raven-js,如何直接使用TraceKit标准化错误字符串(一次有趣的探索)

引子&#xff1a;网上三年前&#xff08;2020&#xff09;的文章介绍了一个raven-js 简单说就是把堆栈信息格式化兼容各浏览器&#xff0c;便于查看错误来源。 **but&#xff1a;**到处找了一下raven-js&#xff0c;已经没有官方出处了&#xff0c;只在Sentry的源码仓库里发现…...

Docker学习笔记(二):在Linux中部署Docker(Centos7下安装docker、环境配置,以及镜像简单使用)

一、前言 记录时间 [2024-4-6] 前置文章&#xff1a;Docker学习笔记&#xff08;一&#xff09;&#xff1a;入门篇&#xff0c;Docker概述、基本组成等&#xff0c;对Docker有一个初步的认识 在上文中&#xff0c;笔者进行了Docker概述&#xff0c;介绍其历史、优势、作用&am…...

uniapp 检查更新

概览 在uniapp中检查并更新应用&#xff0c;可以使用uni-app自带的更新机制。以下是一个简单的示例代码&#xff0c;用于在应用启动时检查更新&#xff1a; // 在App.vue或者其他合适的地方调用 onLaunch: function() {// 当uni-app初始化完成时执行// 判断平台const platfor…...

(Java)数据结构——正则表达式

前言 本博客是博主用于复习数据结构以及算法的博客&#xff0c;如果疏忽出现错误&#xff0c;还望各位指正。 正则表达式概念 正则表达式&#xff0c;又称规则表达式&#xff08;Regular Expression&#xff09;&#xff0c;是一种文本模式&#xff0c;包括普通字符&#xf…...

第6章 6.3.1 正则表达式的语法(MATLAB入门课程)

讲解视频&#xff1a;可以在bilibili搜索《MATLAB教程新手入门篇——数学建模清风主讲》。​ MATLAB教程新手入门篇&#xff08;数学建模清风主讲&#xff0c;适合零基础同学观看&#xff09;_哔哩哔哩_bilibili 正则表达式可以由一般的字符、转义字符、元字符、限定符等元素组…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...